An enzyme immobilized microreactor for continuous-flow biocatalysis of ginsenoside Rb1

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

John Wiley and Sons Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Ginsenoside Rb1 is one of the major bioactive components of Panax ginseng C.A. Meyer (Araliaceae), a medicinal plant that has been used for therapeutic purposes for thousands of years in Asian countries. The pharmaceutical activity of ginsenoside Rb1 highly depends on molecular structure and its deglycosylated metabolites are known to be more potent bioactive compounds. However, these deglycosylated ginsenosides do not exist naturally so they are usually obtained by poorly selective methods, like chemical hydrolysis. RESULTS: In this study, the development and characterization of an alginate-based immobilized enzyme microreactor for the catalytic conversion of ginsenoside Rb1 to more bioactive metabolites have been reported. Enzyme kinetic parameters were calculated and characterization tests (such as determination of surface area of alginate matrix, long-term use, and effect of residence time on conversion yield) were conducted. The system was operated under continuous-flow conditions and compared with acidic and batch enzymatic hydrolysis experiments, as conventional approaches. The enzymatic microreactor showed an enhanced activity by producing 13-fold higher amount of ginsenoside F2 than batch enzymatic hydrolysis. CONCLUSION: Obtained results indicated that the newly developed enzymatic microreactor could successfully convert ginsenoside Rb1 to more active metabolites and have a potential for the biocatalysis of multiple ginsenosides, as well as pharmaceutically active compounds.

Açıklama

Anahtar Kelimeler

alginate hydrogel, ginsenoside, immobilization, microreactor, β-glucosidase

Kaynak

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

96

Sayı

12

Künye