Digital Lusternik-Schnirelmann category of digital functions

dc.authorid0000-0002-5628-7798en_US
dc.contributor.authorVergili, Tane
dc.contributor.authorBorat, Ayşe
dc.date.accessioned2021-03-20T20:30:47Z
dc.date.available2021-03-20T20:30:47Z
dc.date.issued2020
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractRoughly speaking, the digital Lusternik-Schnirelmann category of digital images studies how far a digital image is away from being digitally contractible. The digital LusternikSchnirelmann category (digital LS category, for short) is defined in [A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish J. Math. 2018]. In this paper, we introduce the digital LS category of digital functions. We will give some basic properties and discuss how this new concept will behave if we change the adjacency relation in the domain and in the image of the digital function and discuss its relation with the digital LS category of a digital image.en_US
dc.identifier.doi10.15672/hujms.559796en_US
dc.identifier.endpage1422en_US
dc.identifier.issn1303-5010
dc.identifier.issn2651-477X
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1414en_US
dc.identifier.urihttp://doi.org/10.15672/hujms.559796
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXpZM09UY3lNZz09
dc.identifier.urihttps://hdl.handle.net/20.500.12885/1472
dc.identifier.volume49en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakTR-Dizinen_US
dc.institutionauthorBorat, Ayşe
dc.language.isoenen_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleDigital Lusternik-Schnirelmann category of digital functionsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
10.15672-hujms.559796-933203 (1).pdf
Boyut:
218.11 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text