Molecularly Imprinted Nanoparticle-Embedded Electrospun Mat as an Antibacterial Wound Dressing

dc.authorid0000-0001-8406-149X
dc.authorid0000-0003-2038-725X
dc.authorid0000-0002-8410-1786
dc.contributor.authorCerci, Azize
dc.contributor.authorAkgun, Oguzhan
dc.contributor.authorKaraca, Esra
dc.contributor.authorBakhshpour-Yucel, Monireh
dc.contributor.authorAri, Ferda
dc.contributor.authorCinar, Aycan Yigit
dc.contributor.authorOsman, Bilgen
dc.date.accessioned2026-02-08T15:14:47Z
dc.date.available2026-02-08T15:14:47Z
dc.date.issued2025
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractMolecularly imprinted polymer (MIP) nanoparticles offer a promising controlled drug delivery platform. In this study, amoxicillin (AMOX)-imprinted polymer nanoparticles (similar to 60 nm) were synthesized via emulsion polymerization and incorporated into polyvinyl alcohol (PVA)/sodium alginate (SA) [PVS] electrospun nanofibers to develop a novel wound dressing. The nanoparticle-embedded PVS nanofibers (PVS-AMOX-MIP) demonstrated a sustained cumulative drug release of 43.6% over 2 days, governed by non-Fickian transport per the Korsmeyer-Peppas kinetic model. The nanofibers exhibited favorable physical properties, including a high specific surface area (39.66 m(2)/g), optimal porosity (78.8%), and a water vapor transmission rate (1053.4 +/- 5.9 g/m(2)/day), ideal for wound healing. Antibacterial activity studies showed significant inhibition against Staphylococcus aureus and Escherichia coli, while biocompatibility assays confirmed the mat's noncytotoxic nature and ability to promote cell proliferation. Furthermore, angiogenesis studies revealed enhanced vascularization, which is critical for tissue regeneration. The developed strategy offers a unique approach for advanced wound care and controlled drug delivery applications by combining MIP nanoparticles' molecular recognition capability with the structural advantages of electrospun nanofibers.
dc.description.sponsorshipBursa Uludagbreve; niversitesi [FGA-2022-861]; Research Foundation of Bursa Uludag University
dc.description.sponsorshipThis work was supported by the Research Foundation of Bursa Uludag University (Project No: FGA-2022-861).
dc.identifier.doi10.1002/pat.70100
dc.identifier.issn1042-7147
dc.identifier.issn1099-1581
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85218975036
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/pat.70100
dc.identifier.urihttps://hdl.handle.net/20.500.12885/5439
dc.identifier.volume36
dc.identifier.wosWOS:001423917000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofPolymers For Advanced Technologies
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzWOS_KA_20260207
dc.subjectamoxicillin
dc.subjectantibacterial wound dressing
dc.subjectdrug release
dc.subjectelectrospinning
dc.subjectmolecular imprinting
dc.titleMolecularly Imprinted Nanoparticle-Embedded Electrospun Mat as an Antibacterial Wound Dressing
dc.typeArticle

Dosyalar