Molecularly Imprinted Nanoparticle-Embedded Electrospun Mat as an Antibacterial Wound Dressing
Küçük Resim Yok
Tarih
2025
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Molecularly imprinted polymer (MIP) nanoparticles offer a promising controlled drug delivery platform. In this study, amoxicillin (AMOX)-imprinted polymer nanoparticles (similar to 60 nm) were synthesized via emulsion polymerization and incorporated into polyvinyl alcohol (PVA)/sodium alginate (SA) [PVS] electrospun nanofibers to develop a novel wound dressing. The nanoparticle-embedded PVS nanofibers (PVS-AMOX-MIP) demonstrated a sustained cumulative drug release of 43.6% over 2 days, governed by non-Fickian transport per the Korsmeyer-Peppas kinetic model. The nanofibers exhibited favorable physical properties, including a high specific surface area (39.66 m(2)/g), optimal porosity (78.8%), and a water vapor transmission rate (1053.4 +/- 5.9 g/m(2)/day), ideal for wound healing. Antibacterial activity studies showed significant inhibition against Staphylococcus aureus and Escherichia coli, while biocompatibility assays confirmed the mat's noncytotoxic nature and ability to promote cell proliferation. Furthermore, angiogenesis studies revealed enhanced vascularization, which is critical for tissue regeneration. The developed strategy offers a unique approach for advanced wound care and controlled drug delivery applications by combining MIP nanoparticles' molecular recognition capability with the structural advantages of electrospun nanofibers.
Açıklama
Anahtar Kelimeler
amoxicillin, antibacterial wound dressing, drug release, electrospinning, molecular imprinting
Kaynak
Polymers For Advanced Technologies
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
36
Sayı
2












