Multiple kernel fusion: A novel approach for lake water depth modeling

dc.authorid0000-0003-0559-5261
dc.authorid0000-0002-4767-6660
dc.contributor.authorSafari, Mir Jafar Sadegh
dc.contributor.authorArashloo, Shervin Rahimzadeh
dc.contributor.authorVaheddoost, Babak
dc.date.accessioned2026-02-12T21:05:30Z
dc.date.available2026-02-12T21:05:30Z
dc.date.issued2023
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractMultiple kernel fusion (MKF) refers to the task of combining multiple sources of information in the Hilbert space for improved performance. Very often the combined kernel is formed as a linear composition of multiple base kernels where the combination weights are learned from the data. As the first application of an MKF approach in hydrological modeling, lake water depth as one of the pivot factors in the reservoir analysis is simulated by considering different hydro-meteorological variables. The role of each individual input parameter is initially investigated by applying a kernel regression approach. We then illustrate the utility of an MKF formalism which learns kernel combination of weights to yield an optimal composition for kernel regression. A set of 40-year data collected from 27 groundwater and streamflow stations and 7 meteorological stations for precipitation and evaporation parameters in the vicinity of Lake Urmia are utilized for model development. Both visual and quantitative statistical performance criteria illustrate a superior performance for the MKF approach compared to kernel ridge regression (KRR), the support vector regression (SVR), back propagation neural network (BPNN) and auto regressive (AR) models. More specifically, while each individual input parameter fails to provide an accurate prediction for lake water depth modeling, an optimal combination of all input parameters incorporating the groundwater level, streamflow, precipitation and evaporation via a multiple kernel learning approach enhances the predictive performance of the model accuracy in the multiple scenarios. The promising results (RMSE = 0.098 m; R2 = 0.987; NSE = 0.986) may motivate the application of a MKF approach towards solving alternative and complex hydrological problems.
dc.identifier.doi10.1016/j.envres.2022.114856
dc.identifier.issn0013-9351
dc.identifier.issn1096-0953
dc.identifier.pmid36410463
dc.identifier.scopus2-s2.0-85142528296
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.envres.2022.114856
dc.identifier.urihttps://hdl.handle.net/20.500.12885/6998
dc.identifier.volume217
dc.identifier.wosWOS:000895245600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofEnvironmental Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260212
dc.subjectKernel regression
dc.subjectLake Urmia
dc.subjectMultiple kernel fusion
dc.subjectSupport vector regression
dc.titleMultiple kernel fusion: A novel approach for lake water depth modeling
dc.typeArticle

Dosyalar