Advances in PEKK Thermoplastic Composites: Reinforcing With MWCNTs and GNPs for Enhanced Performance

dc.authorid0000-0002-6249-0565
dc.authorid0000-0002-0418-5124
dc.authorid0000-0003-3784-0495
dc.contributor.authorFerik, Erdem
dc.contributor.authorYilmaz, Sukran Guney
dc.contributor.authorBirak, Selahattin Berat
dc.contributor.authorDemirel, Merve Ozkutlu
dc.contributor.authorOz, Yahya
dc.contributor.authorKaboglu, Cihan
dc.date.accessioned2026-02-08T15:14:47Z
dc.date.available2026-02-08T15:14:47Z
dc.date.issued2025
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractPolyetherketoneketone (PEKK) is a highly regarded material in polymer science due to its outstanding thermal stability, mechanical strength, and chemical resistance. Despite substantial research on PEKK composites reinforced with CNTs and GNPs, two primary challenges remain: inconsistent glass transition temperature behavior at varying filler contents, leading to unpredictable shifts in both thermal and mechanical performance, and the absence of direct comparisons under uniform processing conditions that would allow quantitative evaluation of each filler's effect. In this work, PEKK/MWCNT and PEKK/GNP nanocomposites were produced via the same hot-press molding protocol and systematically evaluated for thermal and mechanical performance, electrical conductivity (using S-value analysis) and microstructural morphology. A range of mechanical tests, including tensile, Charpy impact, and hardness tests, were conducted alongside physical analyses such as differential scanning calorimetry (DSC), thermogravimetric analysis, dynamic mechanical analysis (DMA), thermal conductivity, electrical conductivity, and scanning electron microscopy (SEM). The results demonstrated that both MWCNTs and GNPs significantly enhanced PEKK's properties. The incorporation of MWCNTs raised the glass transition temperature (T-g) to 169 degrees C and the crystallization temperature (T-c) to 327 degrees C, whereas GNPs increased the decomposition temperature (T-d) to 572 degrees C. Adding 1 wt.% of either nano-additive notably improved tensile and flexural strength, while an optimal concentration of 0.1 wt.% was determined for Charpy impact performance. Additionally, higher concentrations resulted in exceptional electrical and thermal conductivity.
dc.description.sponsorshipTrk Havacimath;limath;k ve Uzay Sanayii [TM4121]; Turkiye Bilimsel ve Teknolojik Arascedil;timath;rma Kurumu [1004]
dc.description.sponsorshipThis work was supported by Turk Havac & imath;l & imath;k ve Uzay Sanayii (TM4121) and Turkiye Bilimsel ve Teknolojik Ara & scedil;t & imath;rma Kurumu (1004)
dc.identifier.doi10.1002/pat.70255
dc.identifier.issn1042-7147
dc.identifier.issn1099-1581
dc.identifier.issue7
dc.identifier.scopus2-s2.0-105009958594
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1002/pat.70255
dc.identifier.urihttps://hdl.handle.net/20.500.12885/5440
dc.identifier.volume36
dc.identifier.wosWOS:001524743800001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofPolymers For Advanced Technologies
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzWOS_KA_20260207
dc.subjectGNP
dc.subjectMWCNT
dc.subjectnanocomposite
dc.subjectPEKK
dc.titleAdvances in PEKK Thermoplastic Composites: Reinforcing With MWCNTs and GNPs for Enhanced Performance
dc.typeArticle

Dosyalar