A Neutral relation between metallic structure and almost quadratic ϕ-structure

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, we give a neutral relation between metallic structure and almost quadratic metric ?-structure. Considering N as a metallic Riemannian manifold, we show that the warped product manifold R ?f N has an almost quadratic metric ?-structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic manifolds when $\beta=0$. Then we give nice almost quadratic metric ?-structure examples. In the last section, we construct a quadratic ?-structure on the hypersurface $M^n$ of a locally metallic Riemannian manifold $M^{n+1}$

Açıklama

Anahtar Kelimeler

Matematik

Kaynak

Turkish Journal of Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

43

Sayı

1

Künye