A Neutral relation between metallic structure and almost quadratic ϕ-structure
Yükleniyor...
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, we give a neutral relation between metallic structure and almost quadratic metric ?-structure. Considering N as a metallic Riemannian manifold, we show that the warped product manifold R ?f N has an almost quadratic metric ?-structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic manifolds when $\beta=0$. Then we give nice almost quadratic metric ?-structure examples. In the last section, we construct a quadratic ?-structure on the hypersurface $M^n$ of a locally metallic Riemannian manifold $M^{n+1}$
Açıklama
Anahtar Kelimeler
Matematik
Kaynak
Turkish Journal of Mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Q2
Cilt
43
Sayı
1