Structural and optical characterization of Sm-doped ZnO nanoparticles
Yükleniyor...
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Indian Acad Sciences
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Micro-structural changes in zinc oxide (ZnO) nanoparticles induced by the substitution of Zn2+ in ZnO by a rare earth (RE) metal ion, Sm3+, are investigated. Both pristine and Sm-doped ZnO with a nominal doping concentration of 1, 2 and 4% of Sm using a simple wet-chemical synthetic route followed by calcination at a high temperature of 900 degrees C, are synthesized. Structural investigations are primarily conducted using X-ray powder diffraction (XRPD) and scanning electron microscopy techniques. Evolution of structural parameters (unit cell parameters, average crystallite size, crystallinity percentage, lattice strain, stress, energy density and atomic packing factor) upon Sm doping is investigated together with Rietveld refinement and Le Bail analysis techniques. XRPD data confirmed that the synthesized nanostructures crystallize in a wurtzite hexagonal structure, the dopant Sm is incorporated into the Zn lattice and the annealing treatment plays a crucial role in determining the structural and optical properties of RE-metal-doped nanoparticles. Values of the optical band gap energy estimated from optical absorbance measurements reveal a widening of the band gap.
Açıklama
Anahtar Kelimeler
X-ray powder diffraction, Rietveld analysis, Le Bail analysis, zinc oxide nanoparticles, doping effects
Kaynak
Bulletin Of Materials Science
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
42
Sayı
5