Application of high-pressure homogenization-assisted pH-shift to enhance techno-functional and interfacial properties of lentil protein isolate
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Sci Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
High-pressure homogenization (HPH) is a promising physical non-thermal approach to improve protein technofunctionality. This study aims to examine the effects of HPH on the lentil proteins through the perspective of the interfacial adsorption mechanism. The impact of HPH treatment on lentil protein isolate (LPI) at varying pressure levels (0-150 MPa) was determined using several analytical techniques, including SDS-PAGE, FTIR, solubility, and techno-functional properties (foaming and emulsifying properties), alongside analyses of interfacial tension and interfacial shear rheology at the o/w and a/w interfaces for two pH values (2.0 and 4.5). Results reveal that HPH treatment up to 100 MPa effectively unfolds lentil proteins by disrupting disulfide-bonded subunits into lower molecular weight fractions and unfolding highly-ordered secondary structures into random coils. LPI's capacity to produce emulsions and foams was found to be enhanced concurrently with these physicochemical changes, particularly at pressures up to 50 MPa. The findings aligned with the interfacial tension and shear rheology analyses, which show that proteins can form interfacial viscoelastic films on both o/w and a/w interfaces. Furthermore, the interfacial behavior of LPI and the effect of HPH on the interfacial behavior were found to be pH-dependent. The lower interfacial tension and the higher interfacial viscoelastic moduli (G ' and G '') were recorded at 50 MPa and 0 MPa at pH 2.0 and 4.5, respectively. These results stated that the effects of the HPH on the technofunctionality of LPI can be further enlightened by investigating the interfacial adsorption kinetics.
Açıklama
Anahtar Kelimeler
Lentil protein isolate, High-pressure homogenization, Technofunctional properties, Interfacial tension, Interfacial shear rheology
Kaynak
Food Hydrocolloids
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
157












