Source cell-phone recognition from recorded speech using non-speech segments

Yükleniyor...
Küçük Resim

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Academic Press Inc Elsevier Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In a recent study, we have introduced the problem of identifying cell-phones using recorded speech and shown that speech signals convey information about the source device, making it possible to identify the source with some accuracy. In this paper, we consider recognizing source cell-phone microphones using non-speech segments of recorded speech. Taking an information-theoretic approach, we use Gaussian Mixture Model (GMM) trained with maximum mutual information (MMI) to represent device-specific features. Experimental results using Mel-frequency and linear frequency cepstral coefficients (MFCC and LFCC) show that features extracted from the non-speech segments of speech contain higher mutual information and yield higher recognition rates than those from speech portions or the whole utterance. Identification rate improves from 96.42% to 98.39% and equal error rate (EER) reduces from 1.20% to 0.47% when non-speech parts are used to extract features. Recognition results are provided with classical GMM trained both with maximum likelihood (ML) and maximum mutual information (MMI) criteria, as well as support vector machines (SVMs). Identification under additive noise case is also considered and it is shown that identification rates reduces dramatically in case of additive noise. (C) 2014 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

Source cell-phone recognition, Mel-frequency cepstrum coefficients, Mutual information, Source microphone identification, Gaussian mixture model

Kaynak

Digital Signal Processing

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

35

Sayı

Künye