Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this work, the X-ray mass attenuation coefficients of hydrothermally synthesized barium titanate (BaTiO3) samples were calculated with the purpose of determining the crystallization sequence of BaTiO3. Hydrothermally synthesized samples prepared at 100 degrees C and 200 degrees C, and reacted for varying reaction times between 15 min up to 120 h were studied. Attenuation coefficient measurements were done with a coaxial HPGe gamma detector (Ortec, GEM55P4-95) with a working range in the X-ray energy region. The samples were made into pellets and were exposed to Am-241 radioisotopes at an energy of 59.54 keV for 300 s. Additionally, FT-Raman and XRD measurements were done to support the X-ray mass attenuation measurements. It was found that secondary barium titanate (BT) phases (BaTi2O5 and Ba2TiO4) were formed from the precursor material at the early stages of the hydrothermal reaction and that phase pure BaTiO3 was formed at longer reaction times. The sequence of barium titanate crystallization was determined as follows: BaTi2O5; BaTi2O5 and BaTiO3; BaTi2O5, Ba2TiO4 and BaTiO3: and phase pure BaTiO3.

Açıklama

Anahtar Kelimeler

[No Keywords]

Kaynak

Materials Characterization

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

129

Sayı

Künye