Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites
Küçük Resim Yok
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Iop Publishing Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Graphene nanoplatelets (GNP) were utilized as reinforcement for Al matrix with the aim of exploiting its extremely high mechanical properties. GNP reinforced composites were prepared via powder metallurgical processing route based on mechanical alloying, cold pressing and pressureless sintering. 0.5 to 2 wt% of GNP were incorporated into the aluminum via mechanical alloying up to 8 h in a high-energy ball mill. The mechanically milled powders were compacted by two different methods as uniaxial cold pressing and cold isostatic pressing. The prepared powders and bulk samples were characterized by differential thermal calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX), optical microscopy (OM), and Archimedes density, microhardness and dry sliding wear tests. Additionally, corrosion properties of the Al-GNP composites were determined by the Tafel exploration method. The results showed that the optimum GNP amount could be expected as 0.5 wt%, which enhanced the microhardness and wear resistance values of the Al from 84.5;;1.98 HV and 0.7384 mm(3) to 199.4;;1.88 HV and 0.4476 mm(3), respectively. However, this amount of graphene addition tended to slightly deteriorate the corrosion resistance of Al.
Açıklama
Anahtar Kelimeler
aluminum-graphene composites, mechanical alloying, mechanical properties, microstructure-final, corrosion
Kaynak
Materials Research Express
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
6
Sayı
11