Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame
dc.authorid | 0000-0003-1790-6987 | en_US |
dc.contributor.author | Pholdee, Nantiwat | |
dc.contributor.author | Bureerat, Sujin | |
dc.contributor.author | Yıldız, Ali Rıza | |
dc.date.accessioned | 2021-03-20T20:14:14Z | |
dc.date.available | 2021-03-20T20:14:14Z | |
dc.date.issued | 2017 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümü | en_US |
dc.description.abstract | In this paper, a many-objective hybrid real-code population-based incremental learning and differential evolution algorithm (MnRPBILDE) is proposed based on the concept of objective function space reduction. The method is then implemented on real engineering design problems. The topology, shape and sizing design of a simplified automotive floor-frame structure are formulated and used as test problems. A variety of well-established multi-objective evolutionary algorithms (MOEAs) including the original version of MnRPBILDE are employed to solve the test problems while the results are compared based on hypervolume and C indicators. The results indicate that our proposed algorithm outperforms the other MOEAs. The proposed algorithm is effective and efficient for many-objective optimisations of a car floor-frame structure. | en_US |
dc.description.sponsorship | Thailand Research FundThailand Research Fund (TRF) [BRG5880014] | en_US |
dc.description.sponsorship | The authors are grateful for the financial support by the Thailand Research Fund (BRG5880014). | en_US |
dc.identifier.endpage | 53 | en_US |
dc.identifier.issn | 0143-3369 | |
dc.identifier.issn | 1741-5314 | |
dc.identifier.issue | 1-3 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 20 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/1020 | |
dc.identifier.volume | 73 | en_US |
dc.identifier.wos | WOS:000397192300003 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Yıldız, Ali Rıza | |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises Ltd | en_US |
dc.relation.ispartof | International Journal Of Vehicle Design | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | car floor-frame design | en_US |
dc.subject | many-objective optimisation | en_US |
dc.subject | population-based incremental learning | en_US |
dc.subject | differential evolution | en_US |
dc.subject | topology optimisation | en_US |
dc.title | Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame | en_US |
dc.type | Article | en_US |