Convolutional Neural Network Designs for Finger-vein-based Biometric Identification
dc.authorid | 0000-0002-1529-8765 | en_US |
dc.contributor.author | Avcı, Adem | |
dc.contributor.author | Kocakulak, Mustafa | |
dc.contributor.author | Acır, Nurettin | |
dc.date.accessioned | 2021-03-20T20:12:46Z | |
dc.date.available | 2021-03-20T20:12:46Z | |
dc.date.issued | 2019 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description | 11th International Conference on Electrical and Electronics Engineering (ELECO) -- NOV 28-30, 2019 -- Bursa, TURKEY | en_US |
dc.description.abstract | With the increase in the number of publicly available finger-vein datasets, most of the recent studies on finger-vein biometrics have started to use Convolutional Neural Networks (CNNs). Since it is not an easy task to create a biometric dataset with a large number of users due to several privacy reasons, this study uses 4 publicly available finger-vein datasets. However, these datasets have a limited number of samples per user. From this point of view, in order to avoid possible overfitting problems that occur due to limited training samples, this study provides 4 empirical convolutional neural network designs without using any preprocessing operation for each biometric dataset after systematic comparisons. | en_US |
dc.description.sponsorship | Chamber Elect Engineers Bursa Branch, Bursa Uludag Univ, Dept Elect Elect Engn, Istanbul Tech Univ, Fac Elect & Elect Engn, IEEE Turkey Sect | en_US |
dc.identifier.endpage | 584 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 580 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/690 | |
dc.identifier.wos | WOS:000552654100114 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Avcı, Adem | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2019 11Th International Conference On Electrical And Electronics Engineering (Eleco 2019) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Convolutional Neural Network Designs for Finger-vein-based Biometric Identification | en_US |
dc.type | Conference Object | en_US |