Fabrication and characterization of in-situ Al3Ni intermetallic and CeO2 particulate-reinforced aluminum matrix composites

Küçük Resim Yok



Dergi Başlığı

Dergi ISSN

Cilt Başlığı


Elsevier Ltd

Erişim Hakkı



Al-xNi-yCeO2 (x = 6, 10, 15, 20 and y = 0, 5, 10 wt%) composites were produced by a powder metallurgical production route. Powder mixtures of Al, Ni and CeO2 were fabricated via mechanical alloying (MA) for 4 h in a Spex-type high-energy ball mill. Both the mechanically alloyed (MAed) and non-MAed (as-blended mixtures) powders were pre-compacted in a hydraulic press under 650 MPa and then pressurelessly consolidated at 630 °C for 2 h under an inert atmosphere. The effects of MA process and the amounts of Ni and CeO2 on the microstructural, mechanical and tribological properties of the sintered composites were determined. Based on the SEM and XRD investigations, the MAed powders illustrated a homogenous structure, comprising flaky particles with smaller crystallite sizes and greater lattice strain. According to the XRD analysis, Ni formed Al–Ni intermetallic compounds in the matrix of sintered composites that act as secondary reinforcement phases. The SEM observations conducted on the MAed samples demonstrated more uniformly and finely distributed Al3Ni and CeO2 phases in the microstructure of the MAed samples, unlike the non-MAed ones. The hardness values of sintered composites increased due to the MA process and increasing Ni and CeO2 amounts, and the hardness value of the MAed Al20Ni–10CeO2 sample reached 179 HV. The ultimate compressive strength and failure strain of the MAed Al6Ni–10CeO2 sample were 441 MPa and 11.3%. In the Al20Ni–10CeO2 sample, the compressive strength and failure strain were 391 MPa and 5.5%, respectively. Additionally, the reciprocating wear test results illustrated that both wear resistance and hardness values of the composites increased as the amounts of Ni and CeO2 increased, and the Al20Ni–10CeO2 sample exhibited the highest wear resistance as 0.175 × 10-3 mm3/Nm.


Anahtar Kelimeler

Al–Al3Ni–CeO2 composites, Mechanical and tribological properties, Microstructure, Powder metallurgy


Ceramics International

WoS Q Değeri


Scopus Q Değeri



Ceramics International