Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Univ Novi Sad, Fac Technology
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This study reports on the mechanochemical synthesis (MCS) and consolidation of nanostructured CeB6 powders of high purity. CeB6 powders were prepared via MCS by milling CeO2, B2O3 and Mg powders in a high-energy ball mill for different milling times. The effects of milling time on the formation, microstructure and thermal behaviour of the synthesized powders were investigated and the optimum MCS duration was determined. Purified powders were obtained after HCl leaching by removing MgO by-product. The prepared powders were characterized by a number of techniques including X-ray diffraction, stereomicroscopy, scanning and transmission electron microscopy coupled with energy dispersive spectrometry, differential scanning calorimetry, atomic absorption spectrometry, particle size analysis, surface area analysis and vibrating sample magnetometry. The high-purity CeB6 powders having an average particle size of 86 nm were consolidated by cold-pressing followed by pressureless sintering at 1700 degrees C for 5 h. The bulk CeB6 specimen was investigated for its microstructure, density, electrical resistivity, surface roughness and some mechanical properties (microhardness and wear behaviour). The relative density, electrical resistivity, microhardness and wear rate of the bulk CeB6 were determined as 95.2% TD, 57.50 mu W.cm, 11.65 GPa and 1.46 x 10(-4) mm(3)/N.m, respectively.
Açıklama
Agaogullari, Duygu/0000-0002-0623-5586; Balci, Ozge/0000-0001-6756-3180
Anahtar Kelimeler
borides, mechanochemical synthesis, sintering, microstructure, mechanical properties
Kaynak
Processing And Application Of Ceramics
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
13
Sayı
1