Unveiling the creep mechanisms of rare earth element yttrium added and SPS consolidated CoCrFeNi high entropy alloys

dc.authorid0000-0001-9441-5175
dc.authorid0000-0001-8565-0421
dc.authorid0000-0003-0592-3990
dc.authorid0000-0002-3683-8476
dc.contributor.authorTekin, Mustafa
dc.contributor.authorKotan, Hasan
dc.contributor.authorBaydogan, Murat
dc.contributor.authorKaba, Mertcan
dc.contributor.authorBalci, Erdem
dc.contributor.authorBayrak, Kubra Gurcan
dc.contributor.authorAyas, Erhan
dc.date.accessioned2026-02-08T15:15:47Z
dc.date.available2026-02-08T15:15:47Z
dc.date.issued2025
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractAs high entropy alloys (HEAs) continue to be increasingly studied for next-generation structural materials, gaining a comprehensive understanding of their mechanical properties, including their creep behaviors, remains essential. In this work, rare earth element yttrium (Y) added CoCrFeNi HEAs are produced by mechanical alloying, followed by consolidation via spark plasma sintering (SPS) with ultrafine grain sizes. The microstructures after SPS consolidation are examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The creep properties, including creep displacement, creep strain rate, creep stress, and stress exponent, are evaluated using a nanoindentation test with a Berkovich tip indenter. The results reveal that the average grain size of CoCrFeNi HEA is determined to be 385 +/- 65 nm after SPS consolidation, which reduces to 190 +/- 30 nm and 155 +/- 55 nm with 1 and 4 at.% Y additions, respectively. Accordingly, HEA with the addition of 4 at.% Y exhibits increased hardness, attributed to the presence of additional Y-based oxides and the reduced grain size in its microstructure. Furthermore, the creep mechanisms for the investigated CoCrFeNi HEAs are primarily dominated by dislocation-precipitation interaction based on the calculated stress exponent values.
dc.identifier.doi10.1515/mt-2025-0083
dc.identifier.endpage1506
dc.identifier.issn0025-5300
dc.identifier.issn2195-8572
dc.identifier.issue9
dc.identifier.scopus2-s2.0-105010079534
dc.identifier.scopusqualityQ2
dc.identifier.startpage1495
dc.identifier.urihttps://doi.org/10.1515/mt-2025-0083
dc.identifier.urihttps://hdl.handle.net/20.500.12885/5965
dc.identifier.volume67
dc.identifier.wosWOS:001522517800001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.ispartofMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzWOS_KA_20260207
dc.subjectcreep mechanism
dc.subjecthigh entropy alloys
dc.subjectmechanical alloying
dc.subjectnanoindentation creep
dc.subjectspark plasma sintering
dc.subjectstress exponent
dc.titleUnveiling the creep mechanisms of rare earth element yttrium added and SPS consolidated CoCrFeNi high entropy alloys
dc.typeArticle

Dosyalar