Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Antibacterial polyacrylonitrile (PAN) nanofibers were developed by alkaline hydrolysis and subsequent chlorination. It was shown that the hydrolyzed nanofibers could serve as an N-halamine precursor through chlorination of the amide groups obtained by partial hydrolysis of the nitrile groups. The hydrolysis conditions were optimized, so that sufficient chlorine for effective antibacterial activities could be obtained on the surfaces. The chemical and physical structural changes were well characterized with FTIR, TGA, DSC and SEM. It was found that even though the hydrolyzed nanofibers cyclized with ionic and free radical mechanisms, the chlorinated nanofibers cyclized with only free radical mechanism as evidenced by its higher onset of cyclization temperature. On the other hand, the hydrolysis and chlorination process significantly improved the mechanical properties of the nanofibers. Moreover, the chlorinated nanofibers showed potent antibacterial activities against S. aureus and E. coli with about 6 logs inactivation. The developed antibacterial PAN nanofibers possess great potential for use in various fields, medical industry in particular.

Açıklama

Anahtar Kelimeler

[No Keywords]

Kaynak

Journal Of Materials Science

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

52

Sayı

17

Künye