Effect of slip on the linear stability of the rotating disk boundary layer

dc.authorid0000-0001-8204-8419
dc.authorid0000-0003-2699-9898
dc.authorid0000-0002-7522-125X
dc.authorid0000-0003-4324-530X
dc.authorid0000-0001-6756-6058
dc.contributor.authorThomas, Christian
dc.contributor.authorAlveroglu, Burhan
dc.contributor.authorStephen, Sharon O.
dc.contributor.authorAl-Malki, Mushrifah A. S.
dc.contributor.authorHussain, Zahir
dc.date.accessioned2026-02-12T21:05:31Z
dc.date.available2026-02-12T21:05:31Z
dc.date.issued2023
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractThe linear stability of the rotating disk boundary layer with surface roughness is investigated. Surface roughness is modeled using slip boundary conditions [M. Miklavc?ic? and C. Y. Wang, Z. Angew. Math. Phys. 55, 235-246 (2004)], which establish concentric grooves, radial grooves, and isotropic roughness. The effect on the stationary crossflow and Coriolis instabilities is analyzed by applying slip conditions to the undisturbed flow and linear disturbances. This analysis builds on the work of Cooper et al. [Phys. Fluids 27, 014107 (2015)], who modeled slip effects on the base flow but applied the no-slip condition to the linear perturbations. Neutral stability curves and critical parameter settings for linearly unstable behavior are computed for several radial and azimuthal slip length settings. The application of slip on the linear disturbances has a significant impact on the flow stability. In particular, the Coriolis instability undergoes considerable destabilization in the instance of concentric grooves (i.e., radial slip) and radial grooves with sufficiently large azimuthal slip lengths. In addition, concentric grooves destabilize the crossflow instability when the radial slip length is small. Moreover, in the instance of isotropic roughness, the stabilizing effect is markedly less than the observations of Cooper et al. [Phys. Fluids 27, 014107 (2015)]. Finally, an energy analysis is undertaken to ascertain the physical mechanisms brought about by surface roughness.
dc.identifier.doi10.1063/5.0162147
dc.identifier.issn1070-6631
dc.identifier.issn1089-7666
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85168725326
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1063/5.0162147
dc.identifier.urihttps://hdl.handle.net/20.500.12885/7009
dc.identifier.volume35
dc.identifier.wosWOS:001049438800013
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAip Publishing
dc.relation.ispartofPhysics of Fluids
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260212
dc.subjectAbsolute Instability
dc.subjectGlobal Instability
dc.subjectCompliant Wall
dc.subjectFlow
dc.subjectTransition
dc.subjectLaminar
dc.subjectRough
dc.titleEffect of slip on the linear stability of the rotating disk boundary layer
dc.typeArticle

Dosyalar