A generalized Lyapunov stability theory-based adaptive FIR filter algorithm with variable step sizes
dc.authorid | 0000-0003-1186-3058 | en_US |
dc.contributor.author | Menguc, Engin Cemal | |
dc.contributor.author | Acır, Nurettin | |
dc.date.accessioned | 2021-03-20T20:13:38Z | |
dc.date.available | 2021-03-20T20:13:38Z | |
dc.date.issued | 2017 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description | Menguc, Engin Cemal/0000-0002-0619-549X | en_US |
dc.description.abstract | This paper presents a novel approach to Lyapunov stability theory-based adaptive filter (LAF) design. The proposed design is based on the minimization of the Euclidean norm of the difference weight vector under negative definiteness constraint defined over a novel linear Lyapunov function. The proposed fixed step size LAF (FSS-LAF) algorithm is first obtained by using the method of Lagrangian multipliers. The FSS-LAF satisfying asymptotic stability in the sense of Lyapunov provides a significant performance gain in the presence of a measurement noise. The stability of the FSS-LAF algorithm is also statistically analyzed in this study. Moreover, gradient variable step size (VSS) algorithms are adapted to the FSS-LAF algorithm to further enhance the performance for the first time in this paper. These VSS algorithms are Benveniste (BVSS), Mathews and Farhang-Ang (FVSS) algorithms. Simulation results on system identification problems show that the bounds of step size for the FSS-LAF algorithm are verified, and especially, the BVSS-LAF and FVSS-LAF algorithms provide a better trade-off between steady-state mean square deviation error and convergence rate than other proposed algorithms. | en_US |
dc.identifier.doi | 10.1007/s11760-017-1121-8 | en_US |
dc.identifier.endpage | 1575 | en_US |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issn | 1863-1711 | |
dc.identifier.issue | 8 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1567 | en_US |
dc.identifier.uri | http://doi.org/10.1007/s11760-017-1121-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/911 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:000412849800023 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Acır, Nurettin | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.ispartof | Signal Image And Video Processing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive filter | en_US |
dc.subject | Lyapunov stability theory | en_US |
dc.subject | Variable step size | en_US |
dc.subject | System identification | en_US |
dc.title | A generalized Lyapunov stability theory-based adaptive FIR filter algorithm with variable step sizes | en_US |
dc.type | Article | en_US |