CONVERGENCE THEOREMS IN ORLICZ AND BOGEL CONTINUOUS FUNCTIONS SPACES BY MEANS OF KANTOROVICH DISCRETE TYPE SAMPLING OPERATORS
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Mathematical Sciences-Aims
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study, we prove the convergence theorems on the space of compactly supported functions and in the general setting of Orlicz spaces for a general class of Kantorovich type discrete operators defined by Carlo Bardaro and Ilaria Mantellini. We also define the generalized Boolean sum (GBS) operator for the class of bivariate Kantorovich type discrete operators and examine the approximation properties of GBS operators in the space of Bogel functions.
Açıklama
Anahtar Kelimeler
Orlicz space, sampling series, Kantorovich discrete operator, Bogel function, GBS operator
Kaynak
Mathematical Foundations of Computing
WoS Q Değeri
Q4
Scopus Q Değeri
Q3
Cilt
6
Sayı
3












