CONVERGENCE THEOREMS IN ORLICZ AND BOGEL CONTINUOUS FUNCTIONS SPACES BY MEANS OF KANTOROVICH DISCRETE TYPE SAMPLING OPERATORS

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Inst Mathematical Sciences-Aims

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, we prove the convergence theorems on the space of compactly supported functions and in the general setting of Orlicz spaces for a general class of Kantorovich type discrete operators defined by Carlo Bardaro and Ilaria Mantellini. We also define the generalized Boolean sum (GBS) operator for the class of bivariate Kantorovich type discrete operators and examine the approximation properties of GBS operators in the space of Bogel functions.

Açıklama

Anahtar Kelimeler

Orlicz space, sampling series, Kantorovich discrete operator, Bogel function, GBS operator

Kaynak

Mathematical Foundations of Computing

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

6

Sayı

3

Künye