Industrial symbiosis: Boron waste valorization through CO2 utilization

dc.authorid0000-0001-6763-3249
dc.authorid0000-0002-8574-1056
dc.contributor.authorCopur, Mehmet
dc.contributor.authorPekdemir, Turgay
dc.contributor.authorKocakerim, Mehmet Muhtar
dc.contributor.authorKorucu, Haluk
dc.contributor.authorGuliyev, Rovsen
dc.date.accessioned2026-02-12T21:05:10Z
dc.date.available2026-02-12T21:05:10Z
dc.date.issued2022
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractVarious wastes being generated globally and dumped on land by mineral processing activities pose great ecological and health problems. An example is the boron mineral beneficiation solid wastes. Even greater threat is anthropogenic carbon dioxide (CO2) emissions among key causes of prevalent climate change. By this work, we propose a symbiotic solution to alleviate both environmental threats through recovering valuable boron products from boron wastes (BW), while also utilizing and sequestering CO2 stably and permanently. This article presents the results on the effect of important operation parameters for the performance of such a process within the following ranges determined by preliminary tests: temperature: 20-60 degrees C, solid-to-liquid ratio: 0.1-0.5 g/ml, reaction time: 15-120 min, stirring speed: 300-700 rpm and particle size: 150-600 mu m. CO2 gas (99.9%) flow rate was maintained continuously at 1.57 l/min under atmospheric pressure. The important findings are (1) per ton of BW production of commercially valuable either (a) 310 kg sodium penta-borate or (b) 350 kg sodium penta-borate mixed with Na2CO3, depending on the process configuration, (c) 725 kg relatively pure CaCO3, a potential source for precipitated calcium carbonate (PCC) and (d) 72 kg CO2 utilization, (2) effective parameters for CO2 utilization, in decreasing order are temperature, solid-to-liquid ratio and time, while stirring speed and particle size are ineffective within the range investigated and (3) the optimum operating conditions as: temperature: 60 degrees C, solid-to liquid ratio: 0.1 g/ml, time: 90 min, stirring speed: 500 rpm and particle size: <180 mu m.
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkiye) [108Y170]; Ataturk University, Erzurum, Turkiye
dc.description.sponsorshipWe are grateful to TUBITAK (The Scientific and Technological Research Council of Turkiye) for its financial support (108Y170) and Ataturk University, Erzurum, Turkiye, allowing this grant to be transferred to Cankiri Karatekin University, Cankiri, Turkiye to enable the completion of the research work.
dc.identifier.doi10.1007/s11814-022-1192-2
dc.identifier.endpage2614
dc.identifier.issn0256-1115
dc.identifier.issn1975-7220
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85137758777
dc.identifier.scopusqualityQ2
dc.identifier.startpage2600
dc.identifier.urihttps://doi.org/10.1007/s11814-022-1192-2
dc.identifier.urihttps://hdl.handle.net/20.500.12885/6834
dc.identifier.volume39
dc.identifier.wosWOS:000852127200004
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherKorean Institute Chemical Engineers
dc.relation.ispartofKorean Journal of Chemical Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260212
dc.subjectIndustrial Symbiosis
dc.subjectBoron Processing Wastes
dc.subjectWaste Valorization
dc.subjectCarbon Dioxide Sequestration
dc.subjectCarbon Dioxide Utilization
dc.titleIndustrial symbiosis: Boron waste valorization through CO2 utilization
dc.typeArticle

Dosyalar