Seizure onset detection based on frequency domain metric of empirical mode decomposition

dc.authorid0000-0003-4236-3646en_US
dc.contributor.authorMert, Ahmet
dc.contributor.authorAkan, Aydin
dc.date.accessioned2021-03-20T20:12:58Z
dc.date.available2021-03-20T20:12:58Z
dc.date.issued2018
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Mekatronik Mühendisliği Bölümüen_US
dc.descriptionAkan, Aydin/0000-0001-8894-5794; Mert, Ahmt/0000-0003-4236-3646en_US
dc.description.abstractThis paper explores the data-driven properties of the empirical mode decomposition (EMD) for detection of epileptic seizures. A new method in frequency domain is presented to analyze intrinsic mode functions (IMFs) decomposed by EMD. They are used to determine whether the electroencephalogram (EEG) recordings contain seizure or not. Energy levels of the IMFs are extracted as threshold level to detect the changes caused by seizure activity. A scalar value energy resulting from the energy levels is individually used as an indicator of the epileptic EEG without the requirements of multidimensional feature vector and complex machine learning algorithms. The proposed methods are tested on different EEG recordings to evaluate the effectiveness of the proposed method and yield accuracy rate up to 97.89%.en_US
dc.description.sponsorshipIzmir Katip Celebi University Scientific Research Projects Coordination Unit [2017-ONAP-MUMF-0002]en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit: Poject number 2017-ONAP-MUMF-0002.en_US
dc.identifier.doi10.1007/s11760-018-1304-yen_US
dc.identifier.endpage1496en_US
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue8en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage1489en_US
dc.identifier.urihttp://doi.org/10.1007/s11760-018-1304-y
dc.identifier.urihttps://hdl.handle.net/20.500.12885/753
dc.identifier.volume12en_US
dc.identifier.wosWOS:000444312400008en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorMert, Ahmet
dc.language.isoenen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofSignal Image And Video Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEmpirical mode decompositionen_US
dc.subjectEpilepsyen_US
dc.subjectSeizure detectionen_US
dc.subjectFilter banken_US
dc.titleSeizure onset detection based on frequency domain metric of empirical mode decompositionen_US
dc.typeArticleen_US

Dosyalar