Leakage current repression and real-time spectrum analysis with chirp Z-transform for a novel high-efficiency PV-based inverter applicable in micro-grids

dc.authorid0000-0002-5136-0829en_US
dc.authorid0000-0003-2234-3453en_US
dc.contributor.authorBayrak, Gökay
dc.contributor.authorGhaderi, Davood
dc.contributor.authorSubramaniam, Umashankar
dc.date.accessioned2021-03-20T20:09:27Z
dc.date.available2021-03-20T20:09:27Z
dc.date.issued2020
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description.abstractOne of the most critical elements in the connection of photovoltaic (PV)-based systems used to generate electricity from solar energy is the inverter. The harmonic effects of the inverters to be connected to the grid should be as low as possible, and the total harmonic distortion (THD) should be less than 10%. A high THD value will distort the power quality on the grid side. For this reason, the THD value of the inverters in the grid connection approaches must be determined by spectral analysis to ensure that the necessary protection and improvements are made technically. In this study, a novel inverter topology, including six power switches and two power diodes, is presented, and the voltage data obtained from a grid-connected inverter are acquired in real time, and spectrum analysis is performed with the software developed with LabVIEW. The power efficiency of the proposed inverter is compared with conventional inverter types such as HERIC, H5, and H6 inverters. One of the novelty aspects of the proposed inverter topology is forming a proper freewheeling path including switches and diodes in the inverter branches that can provide a separate DC and ac components, and as a result, this prevents the following the PV side leakage currents to the ac grid side. In the spectrum analysis, the chirp Z-transformation (CZT) was used along the contours of the Z-transformation outside the unit circle. Using CZT, the z-transform was calculated for the inverter output voltage along the spiral lines in the z-plane. Besides, spectrum analysis was performed with fast Fourier transform (FFT) and compared with CZT. The results show that the CZT transformation is more efficient than the FFT algorithm and is useful in calculating a subset of FFT for a sequence. The performance of the proposed inverter is compared with conventional topologies. Hardware implementation and the output signals and the leakage current waveforms are also presented.en_US
dc.identifier.doi10.1007/s00202-020-01002-wen_US
dc.identifier.endpage2057en_US
dc.identifier.issn0948-7921
dc.identifier.issn1432-0487
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage2041en_US
dc.identifier.urihttp://doi.org/10.1007/s00202-020-01002-w
dc.identifier.urihttps://hdl.handle.net/20.500.12885/425
dc.identifier.volume102en_US
dc.identifier.wosWOS:000535200600001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBayrak, Gökay
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofElectrical Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhotovoltaic systemen_US
dc.subjectGrid-connected invertersen_US
dc.subjectLeakage currenten_US
dc.subjectPower qualityen_US
dc.subjectTHDen_US
dc.subjectChirp Z-transformen_US
dc.titleLeakage current repression and real-time spectrum analysis with chirp Z-transform for a novel high-efficiency PV-based inverter applicable in micro-gridsen_US
dc.typeArticleen_US

Dosyalar