Optimizing a-DCF for Spoofing-Robust Speaker Verification
| dc.authorid | 0000-0002-9174-0367 | |
| dc.authorid | 0000-0002-4371-7322 | |
| dc.contributor.author | Kurnaz, Oguzhan | |
| dc.contributor.author | Mishra, Jagabandhu | |
| dc.contributor.author | Kinnunen, Tomi H. | |
| dc.contributor.author | Hanilci, Cemal | |
| dc.date.accessioned | 2026-02-08T15:15:41Z | |
| dc.date.available | 2026-02-08T15:15:41Z | |
| dc.date.issued | 2025 | |
| dc.department | Bursa Teknik Üniversitesi | |
| dc.description.abstract | Automatic speaker verification (ASV) systems are vulnerable to spoofing attacks. We propose a spoofing-robust ASV system optimized directly for the recently introduced architecture-agnostic detection cost function (a-DCF), which allows targeting a desired trade-off between the contradicting aims of user convenience and robustness to spoofing. We combine a-DCF and binary cross-entropy (BCE) with a novel straightforward threshold optimization technique. Our results with an embedding fusion system on ASVspoof2019 data demonstrate relative improvement of 13% over a system trained using BCE only (from minimum a-DCF of 0.1445 to 0.1254). Using an alternative non-linear score fusion approach provides relative improvement of 43% (from minimum a-DCF of 0.0508 to 0.0289). | |
| dc.description.sponsorship | Academy of Finland [349605]; Scientific and Technological Research Council of Turkiye (TUBITAK) [1059B142300330] | |
| dc.description.sponsorship | This work was supported by the Academy of Finland under Grant 349605, through Project SPEECHFAKES. The work of Oguzhan Kurnaz was supported by the Scientific and Technological Research Council of Turkiye (TUBITAK) through the 2214-A fellowship program under Grant 1059B142300330. | |
| dc.identifier.doi | 10.1109/LSP.2025.3545290 | |
| dc.identifier.endpage | 1085 | |
| dc.identifier.issn | 1070-9908 | |
| dc.identifier.issn | 1558-2361 | |
| dc.identifier.scopus | 2-s2.0-105001060545 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 1081 | |
| dc.identifier.uri | https://doi.org/10.1109/LSP.2025.3545290 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12885/5905 | |
| dc.identifier.volume | 32 | |
| dc.identifier.wos | WOS:001445057900002 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | |
| dc.relation.ispartof | Ieee Signal Processing Letters | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | WOS_KA_20260207 | |
| dc.subject | Measurement | |
| dc.subject | Costs | |
| dc.subject | Training | |
| dc.subject | Cost function | |
| dc.subject | Signal processing algorithms | |
| dc.subject | Error analysis | |
| dc.subject | Security | |
| dc.subject | Robustness | |
| dc.subject | Computer architecture | |
| dc.subject | Training data | |
| dc.subject | a-DCF | |
| dc.subject | spoofing-robust speaker verification | |
| dc.title | Optimizing a-DCF for Spoofing-Robust Speaker Verification | |
| dc.type | Article |












