Fully meshless solution of the one-dimensional multigroup neutron transport equation with the radial basis function collocation method

dc.authorid0000-0002-0428-3197en_US
dc.contributor.authorTanbay, Tayfun
dc.contributor.authorOzgener, B.
dc.date.accessioned2021-03-20T20:09:34Z
dc.date.available2021-03-20T20:09:34Z
dc.date.issued2020
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractIn this paper a fully meshless method is proposed for the numerical solution of the one-dimensional multigroup neutron transport equation with anisotropic scattering. Both first-order and even-parity forms of the transport equation are studied. The radial basis function collocation method is chosen for the spatial treatment, and Legendre polynomials are used to approximate the angular variable. The selection of the Legendre polynomials instead of discrete ordinates approach resulted with a fully meshless algorithm in both independent variables. Multiquadric is utilized as the radial function. Seven problems are considered to evaluate the performance of the method. The results show that the method converges exponentially, and it is possible to obtain high levels of accuracies for the multiplication factor and neutron flux with a good stability in both spatial and angular domains. For the one-group isotropic benchmark problem, discrete ordinates solutions employing discontinuous linear finite elements for the spatial variable are also provided, and a comparison of the methods revealed that the fully meshless method produced more accurate results than the discrete ordinates-finite element scheme when the shape parameter is properly chosen. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipIstanbul Technical UniversityIstanbul Technical University [34141]en_US
dc.description.sponsorshipThis work is supported by Istanbul Technical University under grant no. 34141.en_US
dc.identifier.doi10.1016/j.camwa.2019.08.037en_US
dc.identifier.endpage1286en_US
dc.identifier.issn0898-1221
dc.identifier.issn1873-7668
dc.identifier.issue5en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1266en_US
dc.identifier.urihttp://doi.org/10.1016/j.camwa.2019.08.037
dc.identifier.urihttps://hdl.handle.net/20.500.12885/467
dc.identifier.volume79en_US
dc.identifier.wosWOS:000517668200002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorTanbay, Tayfun
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers & Mathematics With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeutron transporten_US
dc.subjectMeshless methoden_US
dc.subjectRadial basis functionen_US
dc.subjectCollocationen_US
dc.subjectP-N approachen_US
dc.titleFully meshless solution of the one-dimensional multigroup neutron transport equation with the radial basis function collocation methoden_US
dc.typeArticleen_US

Dosyalar