A Comparative Study of Non-traditional Methods for Vehicle Crashworthiness and NVH Optimization

dc.authorid0000-0003-1790-6987en_US
dc.contributor.authorKiani, Morteza
dc.contributor.authorYıldız, Ali Rıza
dc.date.accessioned2021-03-20T20:14:21Z
dc.date.available2021-03-20T20:14:21Z
dc.date.issued2016
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.description.abstractIn this paper, metamodeling and five well-known metaheuristic optimization algorithms were used to reduce the weight and improve crash and NVH attributes of a vehicle simultaneously. A high-fidelity full vehicle model is used to analyze peak acceleration, intrusion and component's internal-energy under Full-Frontal, Offset-Frontal, and Side crash scenarios as well as vehicle natural frequencies. The radial basis functions method is used to approximate the structural responses. A nonlinear surrogate-based mass minimization was formulated and solved by five different optimization algorithms under crash-vibration constraints. The performance of these algorithms is investigated and discussed.en_US
dc.identifier.doi10.1007/s11831-015-9155-yen_US
dc.identifier.endpage734en_US
dc.identifier.issn1134-3060
dc.identifier.issn1886-1784
dc.identifier.issue4en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage723en_US
dc.identifier.urihttp://doi.org/10.1007/s11831-015-9155-y
dc.identifier.urihttps://hdl.handle.net/20.500.12885/1039
dc.identifier.volume23en_US
dc.identifier.wosWOS:000387402200006en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorYıldız, Ali Rıza
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofArchives Of Computational Methods In Engineeringen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleA Comparative Study of Non-traditional Methods for Vehicle Crashworthiness and NVH Optimizationen_US
dc.typeReview Articleen_US

Dosyalar