Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method
| dc.authorid | 0000-0002-0428-3197 | |
| dc.authorid | 0000-0001-5238-6011 | |
| dc.contributor.author | Ispir, Murat | |
| dc.contributor.author | Tanbay, Tayfun | |
| dc.date.accessioned | 2026-02-08T15:15:56Z | |
| dc.date.available | 2026-02-08T15:15:56Z | |
| dc.date.issued | 2025 | |
| dc.department | Bursa Teknik Üniversitesi | |
| dc.description.abstract | Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady current continuity equation, covering a one-dimensional two-region P-N junction and a two-dimensional single-region problem. The study employs Gaussian (GA) and generalized multiquadric (GMQ) bases, systematically varying shape parameter and node density, and presents a detailed performance analysis of the meshless method. Results map the accuracy-stability-computation-time landscape: GA achieves faster convergence but over a narrower stability window, whereas GMQ exhibits greater robustness to shape-parameter variation. We identify stability plateaus that preserve accuracy without severe ill-conditioning and quantify the runtime growth inherent to dense global collocation. A utopia-point multi-objective optimization balances error and computation time to yield practical node-count guidance; for the two-dimensional case with equal weighting, an optimum of 19 intervals per side emerges, largely insensitive to the RBF choice. Collectively, the results establish global RBF collocation as a meshless, accurate, and systematically optimizable alternative to conventional mesh-based solvers for high-fidelity carrier-density prediction in P-N junctions, thereby enabling more reliable performance analysis and design of photovoltaic devices. | |
| dc.identifier.doi | 10.3390/en18195267 | |
| dc.identifier.issn | 1996-1073 | |
| dc.identifier.issue | 19 | |
| dc.identifier.scopus | 2-s2.0-105019180417 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.3390/en18195267 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12885/6049 | |
| dc.identifier.volume | 18 | |
| dc.identifier.wos | WOS:001593580500001 | |
| dc.identifier.wosquality | Q3 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Mdpi | |
| dc.relation.ispartof | Energies | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | WOS_KA_20260207 | |
| dc.subject | photovoltaic cell | |
| dc.subject | carrier continuity equation | |
| dc.subject | meshless method | |
| dc.subject | RBF collocation | |
| dc.title | Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method | |
| dc.type | Article |












