In-situ preparation of halloysite nanotube-epoxy thermoset nanocomposites via light-induced cationic polymerization

Küçük Resim Yok



Dergi Başlığı

Dergi ISSN

Cilt Başlığı


Elsevier Ltd

Erişim Hakkı



In the present study, homogeneous mixtures of halloysite nanotubes (HNTs)-epoxy nanocomposites are prepared through chemical treatments. Naturally present halloysite nanotubes (HNT) are primarily modified by 3-(glycidyloxypropyl)trimethoxysilane and subsequently utilized as nanofillers in a mixture of bisphenol A diglycidyl ether and trimethylolpropane triglycidyl ether by varying weight % of modified HNT from 0 to 8%. Photoinitiated cationic crosslinking polymerization of this mixture facilitates the in-situ preparation of HNT/thermoset nanocomposites at room temperature. The covalent attachment of HNT in the thermoset matrix has been confirmed by monitoring the characteristic signals of the mixture, nanofiller, neat thermoset, and final nanocomposite using fourier transformed infrared (FT-IR) spectroscopy. Furthermore, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses proved the existence and distribution of HNT in the thermoset nanocomposites. Indeed, a combination of agglomerated/non-agglomerated HNTs in the thermoset matrix is also determined. On the other hand, mechanical properties of nanocomposites are significantly improved with increase in HNT loading up to 4% ratio. Adding 4% of modified HNT into epoxy increased its tensile strength and elasticity modulus by 6.9 times and 2.3 times than the corresponding neat epoxy thermoset, respectively, without scarifying thermal stability. Therefore, the HNT/epoxy thermoset nanocomposites are suitable candidates for various applications as an alternative of expensive carbon nanotube containing analogues.


Anahtar Kelimeler

Cationic photopolymerization, Characterizations, Crosslinking; Epoxy prepolymers, Halloysite, Thermosets nanocomposites


European Polymer Journal

WoS Q Değeri


Scopus Q Değeri