Classifiers for Synthetic Speech Detection: A Comparison
dc.authorid | 0000-0002-9174-0367 | en_US |
dc.contributor.author | Hanilçi, Cemal | |
dc.contributor.author | Kinnunen, Tomi | |
dc.contributor.author | Sahidullah, Md | |
dc.contributor.author | Sizov, Aleksandr | |
dc.date.accessioned | 2021-03-20T20:15:17Z | |
dc.date.available | 2021-03-20T20:15:17Z | |
dc.date.issued | 2015 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description | 16th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2015) -- SEP 06-10, 2015 -- Dresden, GERMANY | en_US |
dc.description | Sahidullah, Md/0000-0002-0624-2903 | en_US |
dc.description.abstract | Automatic speaker verification (ASV) systems are highly vulnerable against spoofing attacks, also known as imposture. With recent developments in speech synthesis and voice conversion technology, it has become important to detect synthesized or voice-converted speech for the security of ASV systems. In this paper, we compare five different classifiers used in speaker recognition to detect synthetic speech. Experimental results conducted on the ASVspoof 2015 dataset show that support vector machines with generalized linear discriminant kernel (GLDS-SVM) yield the best performance on the development set with the EER of 0.12 % whereas Gaussian mixture model (GMM) trained using maximum likelihood (ML) criterion with the EER of 3.01 % is superior for the evaluation set. | en_US |
dc.description.sponsorship | NISCAN, TU Berlin, TUBS Sci Mkt, EZ Alibaba Grp, Telekon Innovat Lab, Google, Amazon Echo, Facebook, Microsoft, Citrix, Datamall, NXP Software, E Sigma, ELRA, European Media Lab GmbH, EML, Nuance, Linguwerk, Speech Ocean | en_US |
dc.identifier.endpage | 2061 | en_US |
dc.identifier.isbn | 978-1-5108-1790-6 | |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 2057 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/1174 | |
dc.identifier.wos | WOS:000380581600430 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Hanilçi, Cemal | |
dc.language.iso | en | en_US |
dc.publisher | Isca-Int Speech Communication Assoc | en_US |
dc.relation.ispartof | 16Th Annual Conference Of The International Speech Communication Association (Interspeech 2015), Vols 1-5 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | spoof detection | en_US |
dc.subject | countermeasures | en_US |
dc.subject | speaker recognition | en_US |
dc.title | Classifiers for Synthetic Speech Detection: A Comparison | en_US |
dc.type | Conference Object | en_US |