Biaxial deformation behavior and formability of precipitation hardened ultra-fine grained (UFG) Cu-Cr-Zr alloy

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The combined effects of ultrafine-grained (UFG) microstructure and precipitation on the formability and biaxial deformation behavior of a Cu-Cr-Zr alloy were investigated. The UFG microstructure formation results in good formability with an Erichsen index (Ei) of 4.05 mm compared to that of peak-aged coarse grained (CG) alloy (3.95 mm). Aging heat treatments increase strength and formability of the UFG alloy simultaneously. Biaxial deformation behavior is found to be dependent on the strain hardenability. Excellent strain hardenability of the CG alloy brought about higher punch displacement within the membrane stretching regime. However, deformation localization with the early onset of necking is evident in the UFG alloy. Subsequent aging treatments decrease deformation localization behavior of UFG alloy with increasing aging durations. Results also show that both grain refinement and aging increased the punch load due to enhanced strength. A linear relationship is generated based on punch load vs. punch displacement curve slope to predict ultimate tensile strength (UTS) with high accuracy. It is concluded that synergetic effect of UFG microstructure formation and subsequent aging provides a simple and effective procedure to produce Cu-Cr-Zr alloy for applications where balance of strength and formability are needed. (C) 2016 Elsevier B.V. All rights reserved.

Açıklama

Anahtar Kelimeler

Ultra-fine grained materials, Formability, Aging, Erichsen test, Biaxial deformation, Equal channel angular extrusion

Kaynak

Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

656

Sayı

Künye