Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction

dc.contributor.authorKaragöz, Seçgin
dc.contributor.authorTsotsis, Theodore T.
dc.contributor.authorManousiouthakis, Vasilios I.
dc.date.accessioned2021-03-20T20:09:32Z
dc.date.available2021-03-20T20:09:32Z
dc.date.issued2020
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Kimya Mühendisliği Bölümüen_US
dc.description.abstractThis work aims to first quantify the impact of various diffusion models (Maxwell-Stefan, Wilke, Dusty-Gas) on the predictions of a multi-scale membrane reactor/separator mathematical model, and to then demonstrate this model's use for the design and process intensification of membrane reactor/separator systems for hydrogen production. This multi-scale model captures velocity, temperature and species' concentration profiles along the catalyst pellet's radial direction, and along the reactor's axial direction, by solving the momentum, energy, and species transport equations, accounting for convection, conduction, reaction, and diffusion mechanisms. In the first part of work, the effect of pelletscale design parameters (mean pore diameter, volumetric porosity, tortuosity factor, etc.) and various species' flux models on the model predictions is studied. In the second part, the study focuses on the comparison, in terms of their process intensification characteristics, of various hydrogen production processes. These include a conventional high-temperature shift reactor (HTSR)/low-temperature shift reactor (LTSR) sequence, a novel HTSR/membrane separator (MS)/LTSR/MS sequence, and a process that involves lowtemperature shift membrane reactors-LTSMR in a series. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipDOEUnited States Department of Energy (DOE) [DE-FE0026423]; Republic of Turkey Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Turkeyen_US
dc.description.sponsorshipFinancial support through DOE grant DE-FE0026423 "A High Efficiency Ultra-Compact Process for Pre-Combustion CO2 Capture" is gratefully acknowledged. Financial support from The Republic of Turkey Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Turkey is also gratefully acknowledged.en_US
dc.identifier.doi10.1016/j.ijhydene.2019.05.118en_US
dc.identifier.endpage7353en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue12en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage7339en_US
dc.identifier.urihttp://doi.org/10.1016/j.ijhydene.2019.05.118
dc.identifier.urihttps://hdl.handle.net/20.500.12885/458
dc.identifier.volume45en_US
dc.identifier.wosWOS:000521653600007en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.institutionauthorKaragöz, Seçgin
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal Of Hydrogen Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMembraneen_US
dc.subjectReactoren_US
dc.subjectDusty-Gasen_US
dc.subjectMultiscaleen_US
dc.subjectWater gas shift reaction (WGSR)en_US
dc.titleMulti-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reactionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1-s2.0-S0360319919319743-main.pdf
Boyut:
4.12 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text