Motor Imagery Signal Classification Using Constant-Q Transform for BCI Applications
dc.authorid | 0000-0002-9174-0367 | en_US |
dc.authorscopusid | 57206481813 | en_US |
dc.authorscopusid | 35781455400 | en_US |
dc.contributor.author | Balim, Mustafa Alper | |
dc.contributor.author | Hanilçi, Cemal | |
dc.contributor.author | Acir, Nurettin | |
dc.date.accessioned | 2022-04-21T06:04:37Z | |
dc.date.available | 2022-04-21T06:04:37Z | |
dc.date.issued | 2021 | en_US |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Electroencephalography (EEG) signals have been using for brain-computer interface applications for the last two decades. Motor imagery (MI) signals are one of the EEG signal types formed by imagining a limb's movement. Recently with the help of deep neural networks (DNN) for classifying MI signals using time-frequency (TF) features, considerable performance improvement has been reported. This paper proposes using a well-known TF representation technique called Constant-Q Transform (CQT) for the MI signal classification. Experiments conducted on BCI IV 2b dataset with DNN classifier using CQT spectrogram show that CQT outperforms traditional short-time Fourier transform (STFT) representation. | en_US |
dc.identifier.doi | 10.23919/EUSIPCO54536.2021.9616160 | en_US |
dc.identifier.endpage | 1310 | en_US |
dc.identifier.isbn | 978-908279706-0 | |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 1306 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/1941 | |
dc.identifier.volume | 2021 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Balim, Mustafa Alper | |
dc.institutionauthor | Hanilçi, Cemal | |
dc.language.iso | en | en_US |
dc.publisher | European Signal Processing Conference, EUSIPCO | en_US |
dc.relation.ispartof | 29th European Signal Processing Conference, EUSIPCO 2021 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Brain-computer interface | en_US |
dc.subject | Constant-Q transform | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject | Motor imagery | en_US |
dc.title | Motor Imagery Signal Classification Using Constant-Q Transform for BCI Applications | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: