An Inception Inspired Deep Network to Analyse Fundus Images

dc.authorid0000-0001-7153-7583en_US
dc.contributor.authorUslu, Fatmatülzehra
dc.date.accessioned2021-03-20T20:12:46Z
dc.date.available2021-03-20T20:12:46Z
dc.date.issued2019
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.description11th International Conference on Electrical and Electronics Engineering (ELECO) -- NOV 28-30, 2019 -- Bursa, TURKEYen_US
dc.description.abstractA fundus image usually contains the optic disc, pathologies and other structures in addition to vessels to be segmented. This study proposes a deep network for vessel segmentation, whose architecture is inspired by inception modules. The network contains three sub-networks, each with a different filter size, which are connected in the last layer of the proposed network. According to experiments conducted in the DRIVE and IOSTAR, the performance of our network is found to be better than or comparable to that of the previous methods. We also observe that the sub-networks pay attention to different parts of an input image when producing an output map in the last layer of the proposed network; though, training of the proposed network is not constrained for this purpose.en_US
dc.description.sponsorshipChamber Elect Engineers Bursa Branch, Bursa Uludag Univ, Dept Elect Elect Engn, Istanbul Tech Univ, Fac Elect & Elect Engn, IEEE Turkey Secten_US
dc.identifier.endpage977en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage973en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12885/692
dc.identifier.wosWOS:000552654100197en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorUslu, Fatmatülzehra
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2019 11Th International Conference On Electrical And Electronics Engineering (Eleco 2019)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleAn Inception Inspired Deep Network to Analyse Fundus Imagesen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1911.08715.pdf
Boyut:
408.52 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text