An adaptive noise canceller based on QLMS algorithm for removing EOG artifacts in EEG recordings
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, a novel adaptive noise canceller (ANC) based on the quaternion valued least mean square algorithm (QLMS) is designed in order to remove electrooculography (EOG) artifacts from electroencephalography (EEG) recordings. The measurement real-valued EOG and EEG signals (FP1, FP2, AF3 and AF4) are first modeled as four-dimensional processes in the quaternion domain. The EOG artifacts are then removed from the EEG signals in the quaternion domain by using the ANC based on QLMS algorithm. The quaternion representation of these signals allows us to remove EOG artifacts from all channels at the same time instead of removing the EOG artifacts in each EEG recordings separately. The simulation results support the proposed approach.
Açıklama
2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY
Anahtar Kelimeler
Quaternion domain, adaptive noise canceller, quaternion least mean square, EEG and EOG signals
Kaynak
2017 International Artificial Intelligence And Data Processing Symposium (Idap)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A