A Novel Approach to the Development of Natural Resin-Based Biopolymer in the Presence of a Reusable Catalyst: Characterization and Modeling of Material Properties
Küçük Resim Yok
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The rise in environmental and health concerns has led to increasing attention to nature-derived materials. Natural resin (NR) is secreted by pine trees, and it is a great monomer source for synthesizing biopolymers. The objective of this study is to produce terpene rosin phenolic resin (TRPR) from NR, turpentine, and phenol by applying a novel polymerization technique. An environmentally friendly and reusable catalyst (Amberlyst15) was chosen instead of traditional ones. TRPR samples were chemically characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and gel permeation chromatography (GPC) analysis. The average molecular weight (Mw) of TRPR was detected as 560 g/mol. Artificial neural network (ANN) modeling was designed with three inputs (pressure, temperature, and terpene/NR ratio) and four outputs (reaction yield, acid value, saponification value, and softening point). The highest TRPR yield was obtained with a terpene/NR ratio of (1/2) at 80 degrees C and under 3 atm. The lowest acid and saponification values were calculated as 90.54 and 100.11 mg KOH/g, respectively. The softening point of TRPR reached 80 degrees C and it was suggested for use in the paper, ink, and adhesive industries. image
Açıklama
Anahtar Kelimeler
artificial neural network, biopolymer, natural resin, phenolic resin, rosin, turpentine
Kaynak
Journal of Polymer Science
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
63
Sayı
1












