Automated classification of power quality disturbances in a SOFC&PV-based distributed generator using a hybrid machine learning method with high noise immunity
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Pergamon-Elsevier Science Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this study, a new hybrid machine learning (ML) method is developed to classify the power quality disturbances (PQDs) for a hydrogen energy-based distributed generator (DG) system. The proposed hybrid ML method uses a new approach for the feature extraction by using a pyramidal algorithm with an un-decimated wavelet transform (UWT). The pyramidal UWT method is used and investigated with the Stochastic Gradient Boosting Trees (SGBT) classifier to classify PQD signals for a Solid Oxide Fuel Cell & Photovoltaic (SOFC&PV)-based DG. The overfitting problem of SGBT in noisy signals is eliminated with the features extracted by pyramidal UWT. Mathematical, simulative and real data results confirm that the developed UWT-SGBT method can classify PQDs with high accuracy of up to 99.59%. The proposed method is also tested under noisy conditions, and the pyramidal UWT-SGBT method outperformed other ML with wavelet transform (WT)-based methods in the literature in terms of noise immunity. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Hydrogen energy, Power quality, Machine learning, SOFC, Distributed generation
Kaynak
International Journal of Hydrogen Energy
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
47
Sayı
45












