Sentiment Analysis on Twitter data with Semi-Supervised Doc2Vec

dc.authorid0000-0002-1550-563Xen_US
dc.contributor.authorBilgin, Metin
dc.contributor.authorŞentürk, İzzet Fatih
dc.date.accessioned2021-03-20T20:14:03Z
dc.date.available2021-03-20T20:14:03Z
dc.date.issued2017
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Mekatronik Mühendisliği Bölümüen_US
dc.description2017 International Conference on Computer Science and Engineering (UBMK) -- OCT 05-08, 2017 -- Antalya, TURKEYen_US
dc.description.abstractTwitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded.en_US
dc.description.sponsorshipIEEE Adv Technol Human, Istanbul Teknik Univ, Gazi Univ, Atilim Univ, TBV, Akdeniz Univ, Tmmob Bilgisayar Muhendisleri Odasien_US
dc.identifier.endpage666en_US
dc.identifier.isbn978-1-5386-0930-9
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage661en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12885/987
dc.identifier.wosWOS:000426856900123en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorBilgin, Metin
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2017 International Conference On Computer Science And Engineering (Ubmk)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSemi-Supervised Learningen_US
dc.subjectDoc2Vecen_US
dc.subjectSentiment Analysisen_US
dc.subjectMachine Learningen_US
dc.subjectNatural Language Processingen_US
dc.titleSentiment Analysis on Twitter data with Semi-Supervised Doc2Vecen_US
dc.typeConference Objecten_US

Dosyalar