Sentiment Analysis on Twitter data with Semi-Supervised Doc2Vec
dc.authorid | 0000-0002-1550-563X | en_US |
dc.contributor.author | Bilgin, Metin | |
dc.contributor.author | Şentürk, İzzet Fatih | |
dc.date.accessioned | 2021-03-20T20:14:03Z | |
dc.date.available | 2021-03-20T20:14:03Z | |
dc.date.issued | 2017 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Mekatronik Mühendisliği Bölümü | en_US |
dc.description | 2017 International Conference on Computer Science and Engineering (UBMK) -- OCT 05-08, 2017 -- Antalya, TURKEY | en_US |
dc.description.abstract | Twitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded. | en_US |
dc.description.sponsorship | IEEE Adv Technol Human, Istanbul Teknik Univ, Gazi Univ, Atilim Univ, TBV, Akdeniz Univ, Tmmob Bilgisayar Muhendisleri Odasi | en_US |
dc.identifier.endpage | 666 | en_US |
dc.identifier.isbn | 978-1-5386-0930-9 | |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 661 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/987 | |
dc.identifier.wos | WOS:000426856900123 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Bilgin, Metin | |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2017 International Conference On Computer Science And Engineering (Ubmk) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Semi-Supervised Learning | en_US |
dc.subject | Doc2Vec | en_US |
dc.subject | Sentiment Analysis | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Natural Language Processing | en_US |
dc.title | Sentiment Analysis on Twitter data with Semi-Supervised Doc2Vec | en_US |
dc.type | Conference Object | en_US |