DFT Study of Direct Methanol Oxidation to Formaldehyde by N2O on the [Fe](2+)-ZSM-5 Zeolite Cluster
Küçük Resim Yok
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Chemical Soc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The mechanistic pathways of direct oxidation of methanol to formaldehyde by N2O were theoretically investigated by means of density functional theory (DFT) over an extra framework species in ZSM-5 zeolite represented by a [Si6Al2O9H14](2-)[Fe](2+) cluster model. The catalytic reactivity of these species is compared with that of mononuclear Fe1+ and (FeO)(1+) sites in ZSM-5 investigated in our earlier work at the same level of theory (J. Catal. 2011, 282, 191). The formation of the grafted species including methoxy on the [Fe](2+) site was calculated to be thermodynamically more stable than on the [FeO](1+) site and less stable than on the [Fe](1+) site. The order of activation barrier values of a critical step, proton transfer from grafted methoxy to form formaldehyde and water, on these sites is as follows: [Fe](1+) > [Fe](2+) >> [FeO](1+). The calculated vibrational frequencies for grafted species on the iron site on the surface are in good agreement with the experimental values.
Açıklama
FELLAH, Mehmet Ferdi/0000-0001-6314-3365
Anahtar Kelimeler
[No Keywords]
Kaynak
Journal Of Physical Chemistry C
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
116
Sayı
25