Gated transformer network based EEG emotion recognition

dc.contributor.authorBilgin, Metin
dc.contributor.authorMert, Ahmet
dc.date.accessioned2026-02-08T15:15:01Z
dc.date.available2026-02-08T15:15:01Z
dc.date.issued2024
dc.departmentBursa Teknik Üniversitesi
dc.description.abstractMulti-channel Electroencephalogram (EEG) based emotion recognition is focused on several analysis of frequency bands of the acquired signals. In this paper, spectral properties appeared on five EEG bands (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) and gated transformer network (GTN) based emotion recognition using EEG signal are proposed. Spectral energies and differential entropies of 62-channel signals are converted to 3D (sequence-channel-trial) form to feed the GTN. The GTN with enhanced gated two tower based transformer architecture is fed by 3D sequences extracted from SEED and SEED-IV emotional datasets. 15 participants' states in session 1-3 are evaluated using the proposed GTN based sequence classification, and the results are repeated by 3x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\small \times $$\end{document} shuffling. Totally, 135 times training and testing are performed on each dataset, and the results are presented. The proposed GTN model achieves mean accuracy rates of 98.82% on the SEED dataset and 96.77% on the SEED-IV dataset for three and four emotional state recognition tasks, respectively. The proposed emotion recognition model can be employed as a promising approach for EEG emotion recognition.
dc.identifier.doi10.1007/s11760-024-03360-5
dc.identifier.endpage6910
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85196757919
dc.identifier.scopusqualityQ2
dc.identifier.startpage6903
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03360-5
dc.identifier.urihttps://hdl.handle.net/20.500.12885/5560
dc.identifier.volume18
dc.identifier.wosWOS:001253354200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofSignal Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzWOS_KA_20260207
dc.subjectGated transformer network
dc.subjectEmotion recognition
dc.subjectTransformer
dc.subjectTime-series
dc.titleGated transformer network based EEG emotion recognition
dc.typeArticle

Dosyalar