A NEW CLASSIFICATION ALGORITHM: OPTIMALLY GENERALIZED LEARNING VECTOR QUANTIZATION (OGLVQ)

dc.contributor.authorTemel, Turgay
dc.date.accessioned2021-03-20T20:14:05Z
dc.date.available2021-03-20T20:14:05Z
dc.date.issued2017
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Mekatronik Mühendisliği Bölümüen_US
dc.description.abstractWe present a new Generalized Learning Vector Quantization classifier called Optimally Generalized Learning Vector Quantization based on a novel weight-update rule for learning labeled samples. The algorithm attains stable prototype/weight vector dynamics in terms of estimated current and previous weights and their updates. Resulting weight update term is then related to the proximity measure used by Generalized Learning Vector Quantization classifiers. New algorithm and some major counterparts are tested and compared for synthetic and publicly available datasets. For both the datasets studied, it is seen that the new classifier outperforms its counterparts in training and testing with accuracy above 80% its counterparts and in robustness against model parameter varition.en_US
dc.identifier.doi10.14311/NNW.2017.27.031en_US
dc.identifier.endpage576en_US
dc.identifier.issn1210-0552
dc.identifier.issue6en_US
dc.identifier.scopusqualityQ4en_US
dc.identifier.startpage569en_US
dc.identifier.urihttp://doi.org/10.14311/NNW.2017.27.031
dc.identifier.urihttps://hdl.handle.net/20.500.12885/994
dc.identifier.volume27en_US
dc.identifier.wosWOS:000423300700003en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.institutionauthorTemel, Turgay
dc.language.isoenen_US
dc.publisherAcad Sciences Czech Republic, Inst Computer Scienceen_US
dc.relation.ispartofNeural Network Worlden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectmachine learningen_US
dc.subjectclassificationen_US
dc.subjectlearning vector quantizationen_US
dc.subjectself-organized mappingen_US
dc.subjectsupervised learningen_US
dc.subjectunsupervised learningen_US
dc.titleA NEW CLASSIFICATION ALGORITHM: OPTIMALLY GENERALIZED LEARNING VECTOR QUANTIZATION (OGLVQ)en_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
NNW.2017.27.031-with-cover-page-v2.pdf
Boyut:
1016.16 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text