A NEW CLASSIFICATION ALGORITHM: OPTIMALLY GENERALIZED LEARNING VECTOR QUANTIZATION (OGLVQ)
dc.contributor.author | Temel, Turgay | |
dc.date.accessioned | 2021-03-20T20:14:05Z | |
dc.date.available | 2021-03-20T20:14:05Z | |
dc.date.issued | 2017 | |
dc.department | BTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Mekatronik Mühendisliği Bölümü | en_US |
dc.description.abstract | We present a new Generalized Learning Vector Quantization classifier called Optimally Generalized Learning Vector Quantization based on a novel weight-update rule for learning labeled samples. The algorithm attains stable prototype/weight vector dynamics in terms of estimated current and previous weights and their updates. Resulting weight update term is then related to the proximity measure used by Generalized Learning Vector Quantization classifiers. New algorithm and some major counterparts are tested and compared for synthetic and publicly available datasets. For both the datasets studied, it is seen that the new classifier outperforms its counterparts in training and testing with accuracy above 80% its counterparts and in robustness against model parameter varition. | en_US |
dc.identifier.doi | 10.14311/NNW.2017.27.031 | en_US |
dc.identifier.endpage | 576 | en_US |
dc.identifier.issn | 1210-0552 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 569 | en_US |
dc.identifier.uri | http://doi.org/10.14311/NNW.2017.27.031 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12885/994 | |
dc.identifier.volume | 27 | en_US |
dc.identifier.wos | WOS:000423300700003 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Temel, Turgay | |
dc.language.iso | en | en_US |
dc.publisher | Acad Sciences Czech Republic, Inst Computer Science | en_US |
dc.relation.ispartof | Neural Network World | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | machine learning | en_US |
dc.subject | classification | en_US |
dc.subject | learning vector quantization | en_US |
dc.subject | self-organized mapping | en_US |
dc.subject | supervised learning | en_US |
dc.subject | unsupervised learning | en_US |
dc.title | A NEW CLASSIFICATION ALGORITHM: OPTIMALLY GENERALIZED LEARNING VECTOR QUANTIZATION (OGLVQ) | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- NNW.2017.27.031-with-cover-page-v2.pdf
- Boyut:
- 1016.16 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text