Konuşma İşaretlerinin Derin Evrişimsel Oto Kodlayıcı ve Artık Vektör Nicemleme Tabanlı Sıkıştırılması
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, konuşma işaretlerini sıkıştırmak için derin öğrenme tabanlı oto kodlayıcı ve artık vektör nicemlemesini temel alan sıkıştırma yöntemi önerilmiştir. Önerilen sıkıştırma yönteminde, öncelikle giriş konuşma işaretini daha düşük boyutlu bir uzaya atayan oto kodlayıcı kullanılmakta ve ardından oto kodlayıcı çıkışı, artık vektör nicemlemesi ile daha da sıkıştırılmaktadır. Sıkıştırma yöntemi, birbirine paralel çalışan iki farklı kod çözücü yapısı ve iki kod kitapçığı sayesinde farklı oranlarda sıkıştırma oranı sunmaktadır. Yöntemin başarımı konuşma kalitesini algısal değerlendirme metriği kullanılarak TIMIT veri kümesi ile test edilmiştir. Önerilen konuşma sıkıştırma yöntemi, 1.25 ve 2.5 kbps iletim hızları için sırasıyla 1.665 ve 1.985 konuşma kalitesini algısal değerlendirme skorları elde etmiştir.
Açıklama
Anahtar Kelimeler
Konuşma Sıkıştırma, Nedensel Evrişimsel Sinir Ağları, Artık Vektör Nicemlemesi, Derin Oto kodlayıcı
Kaynak
Mühendislik bilimleri ve araştırmaları dergisi (Online)
WoS Q Değeri
Scopus Q Değeri
Cilt
6
Sayı
1












