On Rings whose Quasi Projective Modules Are Projective or Semisimple

dc.contributor.authorErtaş, Nil Orhan
dc.contributor.authorAcar, Ummahan
dc.date.accessioned2022-08-05T06:28:51Z
dc.date.available2022-08-05T06:28:51Z
dc.date.issued2021en_US
dc.departmentBTÜ, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Bölümüen_US
dc.description.abstractFor two modules M and N, P-M(N) stands for the largest submodule of N relative to which M is projective. For any module M, P-M(N) defines a left exact preradical. It is given some properties of P-M(N). We express P-M(N) as a trace submodule. In this paper, we study rings with no quasi-projective modules other than semisimples and projectives, that is, rings whose quasi-projectives are either projective or semisimple (namely QPS-ring). Semi-Artinian rings and rings with no right p-middle class are characterized by using this functor: a ring R right semi-Artinian if and only if for any right R -module M, P-M(M) <=(e) M.en_US
dc.identifier.doi10.26713/cma.v12i2.1490en_US
dc.identifier.endpage302en_US
dc.identifier.issn0976-5905
dc.identifier.issue2en_US
dc.identifier.startpage295en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12885/2016
dc.identifier.volume12en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.institutionauthorErtaş, Nil Orhan
dc.language.isoenen_US
dc.publisherRGN Publicationen_US
dc.relation.ispartofCOMMUNICATIONS IN MATHEMATICS AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectProjective moduleen_US
dc.subjectp-poor moduleen_US
dc.subjectProjectivity domainen_US
dc.subjectSemi-Artininan ringen_US
dc.titleOn Rings whose Quasi Projective Modules Are Projective or Semisimpleen_US
dc.typeArticleen_US

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: