Terahertz uygulamaları için yeni bir fotodiyot tasarımı
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
BTÜ, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
Teknolojinin insanların yaşamlarında önemli bir rol oynamaya başlamasıyla birlikte, telekominikasyon teknolojileri alanındaki gelişmeler de hızla artmaktadır. Bu gelişmelerin sonucu olarak artan veri kullanım oranı, yüksek hızlı veri kullanma ihtiyacını beraberinde getirmektedir. Yüksek veri hızı elde edebilmek için yüksek hızlı elektriksel ve optik bileşenler içeren telekominikasyon sistemleri gerekmektedir. Buda milimetre ve terahertz dalgalarının oluşumunun önemini daha dikkat çekici hale getirmektedir. Yalnızca milimetre ve terahertz dalgalarının oluşumu değil, kablosuz iletişim, görüntüleme ve spektroskopik algılama gibi uygulama alanları da bu gelişmeler sayesinde önem kazanmıştır. THz aralığındaki bu potansiyel uygulamaların önem kazanmasıyla entegre antene sahip cihazlara olan talep gün geçtikçe artmıştır. Bu talebi karşılamak için entegre antenlere sahip UTC-PD'ler ve alternatifleri geliştirilmiştir. Milimetre ve Terahertz (THz) sinyal (dalga) üretiminde, haberleşme, görüntüleme ve spektroskopi gibi birçok alanda kullanılan pahalı ve hacimli THz kaynaklarına alternatif olması açısından gelecek vaat eden UTC-PD'ler son dönemlerde aktif olarak kullanılmaktadır. Bu tezde, oda sıcaklığında kullanım, yüksek çalışma hızı ve yüksek çalışma frekansı gibi özelliklere sahip olan UTC-PD'nin geometrik yapısı modifiye edilerek yeni bir tasarım geliştirilmiştir. Daha yüksek bant genişliği ve yüksek çıkış gücü elde etmek için InGaAs malzemesinden oluşan soğurucu ile InP malzemesinden oluşan toplayıcı katmanları arasına bir yapı eklenmiştir. Eklenen geometrik yapının şekli, malzeme çeşidi ve boyutunda değişimler yapılarak, bu değişimlerin bant genişliği (bandwidth, BW) değerine ne kadar etki ettiği tartışılmıştır. Tasarımın en önemli özelliği 0 (sıfır) Volt yani zero-bias uygulamalarında başarılı bir performans göstermesi ve muadilinden yaklaşık yedi kata kadar daha fazla bant genişliğine sahip olmasıdır. Ayrıca bu tezde, optik ve elektriksel simülasyonlar, Lumerical yazılımı kullanılarak gerçekleştirilmiştir ve bu yazılımla tasarlanan UTC-PD'lerin performansları tartışılmıştır. Optik simülasyolar Lumerical FDTD'de gerçekleştirilmiş daha sonra elde edilen optik üretim oranı (optical generation rate), elektriksel karakterizasyon için Lumerical Device yazılımına aktarılmıştır. Bu simülasyonlar ile UTC-PD'nin cihaz yapısının optimizasyonu araştırılmış ve sonuçlar literatürde var olan ve referans alınan klasik UTC-PD tasarımı ile karşılaştırılmıştır. Ayrıca FDTD ve Device alt modül çözücülerinin çalışma prensibi üzerinde durulmuştur.
As technology begins to play an important role in people's lives, developments in the field of telecommunication technologies are increasing rapidly. As a result of these developments, the increasing data usage rate brings the need for high-speed data usage. In order to achieve high data rates telecommunication systems containing high-speed electrical and optical components are required. This makes the importance of the generation of millimeter and terahertz waves more remarkable. Not only the generation of millimeter and terahertz waves, but also application areas such as wireless communication, imaging and spectroscopic sensing have gained importance thanks to these developments. With the importance of these potential applications in the THz range, the demand for devices with integrated antennas has increased day by day.UTC-PDs with integrated antennas and alternatives have been developed to compensate this demand. Promising UTC-PDs have been actively used recently in terms of being an alternative to expensive and bulk THz resources used in many areas such as millimeter and Terahertz (THz) signal (wave) production, communication, imaging and spectroscopy. In this thesis, a new design has been developed by modifying the geometric structure of UTC-PD, which has features such as room temperature usage, high operating speed and high operating frequency. In order to achieve higher bandwidth and higher output power, a geometric structure has been added between the absorber layers made of InGaAs material and the collector layers made of InP material. By making changes in the shape, material type and size of the added geometric structure, how much these changes affect the BW value is discussed. The most important feature of the design is that it performs successfully in 0 (zero) Volt, in other words zero-bias, applications and has approximately seven times more bandwidth than its equivalent. Also, in this thesis, optical and electrical simulations were performed using Lumerical software and the performances of UTC-PDs designed with this software are discussed. Optical simulations were performed in Lumerical FDTD and then the obtained optical generation rate was transferred to Lumerical Device software for electrical characterization. With these simulations, the optimization of the device structure of UTC-PD was investigated and the results were compared with the classical UTC-PD design, which is available and referenced in the literature. Also, the working principle of FDTD and Device submodule solvers are emphasized.
As technology begins to play an important role in people's lives, developments in the field of telecommunication technologies are increasing rapidly. As a result of these developments, the increasing data usage rate brings the need for high-speed data usage. In order to achieve high data rates telecommunication systems containing high-speed electrical and optical components are required. This makes the importance of the generation of millimeter and terahertz waves more remarkable. Not only the generation of millimeter and terahertz waves, but also application areas such as wireless communication, imaging and spectroscopic sensing have gained importance thanks to these developments. With the importance of these potential applications in the THz range, the demand for devices with integrated antennas has increased day by day.UTC-PDs with integrated antennas and alternatives have been developed to compensate this demand. Promising UTC-PDs have been actively used recently in terms of being an alternative to expensive and bulk THz resources used in many areas such as millimeter and Terahertz (THz) signal (wave) production, communication, imaging and spectroscopy. In this thesis, a new design has been developed by modifying the geometric structure of UTC-PD, which has features such as room temperature usage, high operating speed and high operating frequency. In order to achieve higher bandwidth and higher output power, a geometric structure has been added between the absorber layers made of InGaAs material and the collector layers made of InP material. By making changes in the shape, material type and size of the added geometric structure, how much these changes affect the BW value is discussed. The most important feature of the design is that it performs successfully in 0 (zero) Volt, in other words zero-bias, applications and has approximately seven times more bandwidth than its equivalent. Also, in this thesis, optical and electrical simulations were performed using Lumerical software and the performances of UTC-PDs designed with this software are discussed. Optical simulations were performed in Lumerical FDTD and then the obtained optical generation rate was transferred to Lumerical Device software for electrical characterization. With these simulations, the optimization of the device structure of UTC-PD was investigated and the results were compared with the classical UTC-PD design, which is available and referenced in the literature. Also, the working principle of FDTD and Device submodule solvers are emphasized.
Açıklama
Anahtar Kelimeler
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering