Rüzgar türbinlerinde kullanılan çift beslemeli asenkron generatörlerin arıza sonrası yeniden bağlanabilme kapasitesinin akıllı kontrol yöntemleriyle geliştirilmesi
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Tüm dünyada enerji ihtiyacının büyük bir bölümünün karşılandığı fosil yakıtların ömrü kısalmakta, maliyetleri ve çevreye verdikleri zararın boyutları da her geçen gün ciddi anlamda artmaktadır. Küresel ısınmanın yarattığı sorunlar son yıllarda hissedilir derecede etkisini göstermektedir. Dünyanın her bölgesinde, daha önce hiç görülmemiş sıklıkta doğa olayları ile karşılaşılmaktadır. Ayrıca dünya nüfusun artması ve paralelinde sanayileşmenin de artması, sürekli bir şekilde enerji ihtiyacını artırmaktadır. Bütün bu sebepler, ülkeleri enerji arzını karşılayabilecekleri yeni kaynaklara yönelmeye zorlamıştır. Yenilenebilir enerji kaynakları en etkin ve çevre dostu alternatif olduğundan, yenilenebilir enerjiye olan ilgi tüm dünyada katlanarak artmaktadır. Bu kapsamda, ülkemizde de tüm dünyada olduğu gibi en çok rüzgar enerjisi kullanılmaktadır. Rüzgar enerji santrallerinin çevreye duyarlı olması, karbon salınımlarının bulunmaması, düşük arazi işgali sebebiyle doğada büyük tahribatlar oluşturmaması gibi olumlu yönleri bulunmakla birlikte, bazı dezavantajları da bulunmaktadır. Rüzgarın net bir şekilde tahmin edilememesi, çevresel ve doğal koşullara göre değişmesi, enerjide sürekliliği ve güvenilirliği azaltmaktadır. Ayrıca bu santrallerdeki artış, şebeke geriliminde değişiklik olması ve arıza durumlarında santrallerin performansı konusunda da endişelere neden olmuştur. Bu nedenle ülkeler şebeke kodlarına yenilenebilir enerji santrallerini eklemişlerdir. Şebeke kodunda, arıza sonrası yeniden bağlanabilme kapasitesi (FRT), aktif güç kontrolü, reaktif güç kapasitesi, frekans tepkisi gibi birçok konu ele alınmaktadır. Arıza sonrası yeniden bağlanabilme kapasitesi konusu ise üç başlık altında toplanmaktadır. Bunlar; reaktif güç üretimine, koruma devrelerine ve yazılıma dayalı çözüm stratejileridir. Bu tez çalışmasında, çift beslemeli asenkron generatörlü (DFIG) rüzgar türbinlerine sahip bir santralin FRT kabiliyeti geliştirilmeye çalışılmıştır. Bu bağlamda, reaktif güç üretimi esasında çalışan statik senkron kompanzatör (Statcom) kullanılmıştır. Matlab/Simulink'te oluşturulan güç sisteminde faz-toprak kısa devresi, faz-faz kısa devresi ve 3 faz-toprak kısa devresi arızaları simüle edilmiştir. Arıza anında sistemde meydana gelen gerilim düşümleri iki ayrı ölçüm noktası referans alınarak incelenmiştir. Statcom'un kontrolünde ise geliştirilen oransal-integral (PI) kontrol yöntemi ve akıllı kontrol yöntemlerinden uyarlamalı sinirsel bulanık çıkarım sistemi (Anfis) tercih edilmiştir. DFIG'in FRT kabiliyetine, farklı kontrol yöntemlerine sahip Statcom'un etkisinin incelendiği bu çalışmada; Statcomsuz, PI kontrollü Statcomlu ve Anfis kontrollü Statcomlu olmak üzere üç ayrı durum çalışılmıştır. Arıza sonrası koşullar incelendiğinde, maksimum aşma ve yerleşme süresi değerlerinde en iyi performansı geliştirilen Anfis denetleyicili Statcom'lu sistemin verdiği görülmektedir. Geliştirilen akıllı yöntem ile rüzgar türbinlerinin FRT yeteneğinin geliştirilmesi konusunda farklı bir yaklaşım geliştirilerek, uygulamada karşılaşılabilecek ani gerilim yükselmesi gibi sistemi zorlayıcı etkilerin önüne geçilerek, çok daha kısa cevap süresine sahip, kararlı ve uygulamada da güvenle kullanılabilecek yeni bir yöntem önerilmiştir.
Fossil fuels, which meet a large part of the energy need all over the world, are shortening their lifespan, their costs and the extent of the damage they cause to the environment are increasing day by day. The problems created by global warming have had a noticeable effect in recent years. In every part of the world, natural events are encountered with a frequency never seen before. In addition, the increase in the world population and the increase in industrialization in parallel increase the need for energy continuously. All these reasons have forced countries to turn to new sources where they can meet their energy supply. Since renewable energy sources are the most efficient and environmentally friendly alternative, the interest in renewable energy is increasing exponentially all over the world. In this context, wind energy is mostly used in our country, as in the rest of the world. Although wind power plants have positive aspects such as being sensitive to the environment, not having carbon emissions, and not causing great destruction in nature due to low land occupation, they also have some disadvantages. The fact that the wind cannot be predicted clearly and changes according to environmental and natural conditions reduces the continuity and reliability in energy. In addition, the increase in these power plants has also caused concerns about the performance of the power plants in case of changes in the voltage and failure situations. For this reasons, countries have added renewable energy plants to their grid codes. In the grid code, many topics such as faulth ride through capacity (FRT), active power control, reactive power capacity, frequency response are covered. The issue of reconnection capacity after failure is grouped under three headings. These are; solution strategies based on reactive power generation, protection circuits and software. In this thesis, the FRT capability of a power plant with doubly fed induction generator (DFIG) wind turbines has been tried to be developed. In this context, a static synchronous compensator (Statcom) operating on the basis of reactive power generation is used. In the power system created in Matlab/Simulink, single phase-to-ground short circuit, phase-to-phase short circuit and 3 phase-to-ground short circuit faults are simulated. The voltage drops occurring in the system at the time of the fault were examined with reference to two separate measurement points. In the control of Statcom, the developed proportional-integral (PI) control method and the adaptive neural fuzzy inference system (Anfis) among the smart control methods were preferred. In this study, the effect of Statcom, which has different control methods, on the FRT capability of DFIG; Three different cases were studied: without Statcom, with PI-controlled Statcom and with Anfis-controlled Statcom. When the post-fault conditions are examined, it is seen that the system with Statcom with Anfis controller gives the best performance in terms of maximum overshoot and settling time. With the developed smart method, a different approach has been developed to improve the FRT capability of wind turbines, and a new method with a much shorter response time, stable and safe to be used in practice has been proposed by avoiding the system-challenging effects such as sudden voltage spikes that may be encountered in practice.
Fossil fuels, which meet a large part of the energy need all over the world, are shortening their lifespan, their costs and the extent of the damage they cause to the environment are increasing day by day. The problems created by global warming have had a noticeable effect in recent years. In every part of the world, natural events are encountered with a frequency never seen before. In addition, the increase in the world population and the increase in industrialization in parallel increase the need for energy continuously. All these reasons have forced countries to turn to new sources where they can meet their energy supply. Since renewable energy sources are the most efficient and environmentally friendly alternative, the interest in renewable energy is increasing exponentially all over the world. In this context, wind energy is mostly used in our country, as in the rest of the world. Although wind power plants have positive aspects such as being sensitive to the environment, not having carbon emissions, and not causing great destruction in nature due to low land occupation, they also have some disadvantages. The fact that the wind cannot be predicted clearly and changes according to environmental and natural conditions reduces the continuity and reliability in energy. In addition, the increase in these power plants has also caused concerns about the performance of the power plants in case of changes in the voltage and failure situations. For this reasons, countries have added renewable energy plants to their grid codes. In the grid code, many topics such as faulth ride through capacity (FRT), active power control, reactive power capacity, frequency response are covered. The issue of reconnection capacity after failure is grouped under three headings. These are; solution strategies based on reactive power generation, protection circuits and software. In this thesis, the FRT capability of a power plant with doubly fed induction generator (DFIG) wind turbines has been tried to be developed. In this context, a static synchronous compensator (Statcom) operating on the basis of reactive power generation is used. In the power system created in Matlab/Simulink, single phase-to-ground short circuit, phase-to-phase short circuit and 3 phase-to-ground short circuit faults are simulated. The voltage drops occurring in the system at the time of the fault were examined with reference to two separate measurement points. In the control of Statcom, the developed proportional-integral (PI) control method and the adaptive neural fuzzy inference system (Anfis) among the smart control methods were preferred. In this study, the effect of Statcom, which has different control methods, on the FRT capability of DFIG; Three different cases were studied: without Statcom, with PI-controlled Statcom and with Anfis-controlled Statcom. When the post-fault conditions are examined, it is seen that the system with Statcom with Anfis controller gives the best performance in terms of maximum overshoot and settling time. With the developed smart method, a different approach has been developed to improve the FRT capability of wind turbines, and a new method with a much shorter response time, stable and safe to be used in practice has been proposed by avoiding the system-challenging effects such as sudden voltage spikes that may be encountered in practice.
Açıklama
Lisansüstü Eğitim Enstitüsü, Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering