Elektrikli araç batarya paketlerinde polimer nanokompozit malzeme kullanımlarının araştırılması
Küçük Resim Yok
Tarih
2025
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
Bu tez çalışmasında, elektrikli araç (EV) batarya paketlerinde kullanılmak üzere hibrit polimer nanokompozitler geliştirerek, bu nanokompozitlerin termal ve mekanik özelliklerinin iyileştirirken elektriksel yalıtımlarının korunması hedeflenmiştir. Elektrikli araçlara olan talep arttıkça, düşük menzil ve batarya performansı gibi temel sorunların çözülmesi önemli hale gelmiştir. Bu soruna karşı geliştirilebilecek çözümlerden biri de aracın ağırlığını azaltmaktır. Böylelikle enerji tüketimi azalacak ve batarya ömrü artabilecektir. Bu amaçla, hafif, maliyet açısından uygun ve geri dönüştürülebilir polimer nanokompozitlerin, otomotiv üretiminde kullanılan geleneksel ağır metallerin yerine bir alternatif olabilmeleri önem kazanmıştır. Bu çalışmada, polimer matris olarak polipropilen (PP) seçilmiştir. İlk aşamada, PP'nin termal iletkenliğini ve mekanik dayanımını artırmak amacıyla eşit miktarlarda hegzagonal bor nitrür (hBN) ve silisyum karbür (SiC) katkıları, farklı toplam ağırlıkça oranlarda (%20, %40 ve %50) PP matris içerisine eklenerek PP/hBN/SiC nanokompozitler üretilmiştir. İkinci aşamada ise, katkıların polimer matrisi ile uyumunu artırabilmek ve nanokompozit yapının nihai özelliklerini iyileştirmek amacı ile, hBN ve SiC parçacıklarının tetraetil ortotitanat (Ti) ile kaplandığı PP/Ti/hBN/Ti/SiC polimer nanokompozit numuneler de benzer ağırlıkça oranları (%20, %40 ve %50) ile üretilmiştir. Numuneler, mekanik karıştırma ve basınçlı kalıplama yöntemleri ile karakterizasyon yöntemlerine uygun olarak hazırlanmışlardır. Bu çalışma, polipropilen matrisine hexagonal bor nitrür ve silisyum karbür katkılarının eklenmesinin, malzemenin mekanik, termal, elektriksel ve yangın dayanım özellikleri üzerinde önemli iyileşmeler sağladığını göstermektedir. Katkı oranı arttıkça, polipropilenin elastik modülü %57 oranında artmış ve mekanik sertlik belirgin şekilde iyileşmiştir; ancak %40 ve %50 gibi yüksek katkı oranlarında bazı mekanik özelliklerde azalmalar gözlemlenmiştir. Ayrıca, titanat uyumlaştırıcı ajanının katkı maddelerinin homojen dağılımını sağlayarak esneklik ve darbe dayanımını artırdığı da bulunmuştur. Çekme dayanımında, özellikle %40 ve %50 katkı oranlarında belirgin azalma gözlemlenirken, titanat kaplamalı numunelerde çekme dayanımı daha az düşmüştür. Termal analizler, katkıların PP'nin ısıl özelliklerini iyileştirirken, aşırı katkı oranlarının olumsuz etkiler yaratabileceğini de göstermiştir. Termal iletkenlik, %20 hBN/SiC katkılı numunelerde saf PP'ye kıyasla %216 artarken, titanat kaplamalı numunelerde bu artış %248'e çıkmıştır. Bu sonuçlar, polipropilen bazlı nanokompozitlerin endüstriyel uygulamalar için potansiyel taşıdığını ve optimizasyon gerekliliğini vurgulamaktadır. Bu çalışma, Doç. Dr. Meral AKKOYUN KURTLU'un yürütücüsü olduğu 223M505 numaralı TÜBİTAK 1002-A projesi kapsamında tamamlanmıştır.
In this thesis, it was aimed to develop hybrid polymer nanocomposites for use in electric vehicle (EV) battery packs and to improve the thermal and mechanical properties of these nanocomposites while preserving their electrical insulation. Since the demand for electric vehicles is growing, addressing key issues such as limited driving range and battery performance becomes increasingly important. One of the primary challenges contributing to this issue is the weight of the vehicle, which directly increases energy consumption and battery life. Reducing vehicle weight is a promising solution, and lightweight, cost-effective, and recyclable polymer composites offer an alternative to traditional heavy metals used in automotive manufacturing. In this study, polypropylene (PP) was selected as the polymer matrix. In the first stage, to increase the thermal conductivity and mechanical strength of PP, equal amounts of hexagonal boron nitride (hBN) and silicon carbide (SiC) fillers were added to the PP matrix at different total weight ratios (20%, 40% and 50%) to produce PP/hBN/SiC nanocomposites. In the second stage, to improve the compatibility of the additives with the polymer matrix and to improve the final properties of the nanocomposite structure, PP/Ti/hBN/Ti/SiC polymer nanocomposite samples in which hBN and SiC particles were coated with tetraethyl orthotitanate (Ti) were produced at similar weight ratios (20%, 40% and 50%). The samples were prepared in accordance with the characterization methods by mechanical mixing and compression molding techniques. This study demonstrates that the addition of hexagonal boron nitride and silicon carbide nano fillers to the polypropylene matrix leads to significant improvements in the material's mechanical, thermal, electrical, and fire resistance properties. As the filler content increased, the elastic modulus of polypropylene improved by 57%, and mechanical stiffness was notably enhanced. However, some mechanical properties were observed to decrease at higher filler concentrations, such as 40% and 50%. Additionally, the use of titanate coupling agents was found to promote a more homogeneous distribution of the fillers, improving flexibility and impact resistance. Tensile strength showed a significant decrease, particularly at 40% and 50% filler concentrations, but the tensile strength of titanate-coated samples decreased less. Thermal analyses showed that the fillers improved the thermal properties of PP, while excessively high filler contents could lead to adverse effects. It is observed that, thermal conductivity increased by 216% for the 20% hBN/SiC-filled samples compared to pure PP, and this increase reached 248% for the titanate-coated samples. These results highlight the potential of polypropylene-based nanocomposites for industrial applications and emphasize the need for optimization. This study was completed within the scope of TUBITAK 1002-A project numbered 223M505, whose director is Assoc. Prof. Dr. Meral AKKOYUN KURTLU.
In this thesis, it was aimed to develop hybrid polymer nanocomposites for use in electric vehicle (EV) battery packs and to improve the thermal and mechanical properties of these nanocomposites while preserving their electrical insulation. Since the demand for electric vehicles is growing, addressing key issues such as limited driving range and battery performance becomes increasingly important. One of the primary challenges contributing to this issue is the weight of the vehicle, which directly increases energy consumption and battery life. Reducing vehicle weight is a promising solution, and lightweight, cost-effective, and recyclable polymer composites offer an alternative to traditional heavy metals used in automotive manufacturing. In this study, polypropylene (PP) was selected as the polymer matrix. In the first stage, to increase the thermal conductivity and mechanical strength of PP, equal amounts of hexagonal boron nitride (hBN) and silicon carbide (SiC) fillers were added to the PP matrix at different total weight ratios (20%, 40% and 50%) to produce PP/hBN/SiC nanocomposites. In the second stage, to improve the compatibility of the additives with the polymer matrix and to improve the final properties of the nanocomposite structure, PP/Ti/hBN/Ti/SiC polymer nanocomposite samples in which hBN and SiC particles were coated with tetraethyl orthotitanate (Ti) were produced at similar weight ratios (20%, 40% and 50%). The samples were prepared in accordance with the characterization methods by mechanical mixing and compression molding techniques. This study demonstrates that the addition of hexagonal boron nitride and silicon carbide nano fillers to the polypropylene matrix leads to significant improvements in the material's mechanical, thermal, electrical, and fire resistance properties. As the filler content increased, the elastic modulus of polypropylene improved by 57%, and mechanical stiffness was notably enhanced. However, some mechanical properties were observed to decrease at higher filler concentrations, such as 40% and 50%. Additionally, the use of titanate coupling agents was found to promote a more homogeneous distribution of the fillers, improving flexibility and impact resistance. Tensile strength showed a significant decrease, particularly at 40% and 50% filler concentrations, but the tensile strength of titanate-coated samples decreased less. Thermal analyses showed that the fillers improved the thermal properties of PP, while excessively high filler contents could lead to adverse effects. It is observed that, thermal conductivity increased by 216% for the 20% hBN/SiC-filled samples compared to pure PP, and this increase reached 248% for the titanate-coated samples. These results highlight the potential of polypropylene-based nanocomposites for industrial applications and emphasize the need for optimization. This study was completed within the scope of TUBITAK 1002-A project numbered 223M505, whose director is Assoc. Prof. Dr. Meral AKKOYUN KURTLU.
Açıklama
06.09.2025 tarihine kadar kullanımı yazar tarafından kısıtlanmıştır.
Anahtar Kelimeler
Polimer Bilim ve Teknolojisi, Polymer Science and Technology