Bir giyilebilir alt vücut dış iskeleti tasarımı ve küçültülmüş prototip üretimi
Yükleniyor...
Dosyalar
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Giyilebilir dış iskeletler; kökleri 1890 yılına kadar uzanan, son 40 yıldır ise robotik topluluğunun çektiği dikkatin sürekli arttığı bir çalışma alanıdır. Adından da anlaşılabileceği üzere bu cihazlar, insanlar tarafından giyilebilen, yönlendirilebilen, ya da kendisini giyen insanın hareketlerini kontrol edebilen robotik yapılardır. Bu potansiyel, bu yapıların savunma sanayisinden fizik tedaviye kadar, insan bedeninin dahil olduğu birçok alanda giyilebilir teknolojilerden yararlanma çabasını doğurmuştur. Bu tez kapsamında, yürüme yetisini kısmen ya da tamamen kaybetmiş veya yürüme rehabilitasyonuna ihtiyaç duyan insanların yarar sağlayabilmesi amacıyla bir giyilebilir dış iskelet geliştirilmiştir. Tahrik sistemi olarak pnömatik yapay kaslar kullanan bu yapı, insan vücudunun belden aşağısında kalan kalça, bacak ve ayak (alt vücut) uzuvlarının bir fonksiyonu olan yürüme eylemini kendi gerçekleştiren; dolayısıyla da kendisini giyen insanın yürümesini sağlayan robotik bir cihazdır. Bunun için öncelikle yapının mekanik tasarımı gerçekleştirilmiştir. Tasarım için model olarak, 187 cm ve 80 kg ağırlığında bir insanın vücut ölçüleri kullanılmıştır. Mekanik tasarım aşaması tamamlandıktan sonra, istenen kriterleri sağlayan bir yürüme döngüsü elde edilmiş ve bu hareket döngüsü için gereken eklem açıları ters kinematik işlemiyle bulunmuştur. Mevcut çalışmada, elektrik motorları yerine pnömatik yapay kaslar kullanılması sebebiyle eklem açıları aktüatör girdisi olarak kullanılamamaktadır. Bu yüzden, yapay kas uzunluğu ve eklem açısı arasında bir matematiksel bağıntı elde edilmiş, bu sayede eldeki açılar girdi olarak kullanılabilecek hale getirilmiştir. Yürüme döngüsündeki kritik noktaların yük taşıma durumlarının tespiti için sonlu elemanlar yöntemiyle yapısal analiz gerçekleştirilmiştir. Yapılan analiz sonucunda, geliştirilen yapının bütün bir yürüme döngüsü boyunca üzerine uygulanan yükü taşıyabildiği, dengede kalabildiği, dolayısıyla da güvenli bir hareket sağlayabildiği görülmüştür. Son aşama olarak yapının; 3B yazıcı vasıtasıyla, %25 boyutunda ölçeklendirilmiş bir prototip üretimi gerçekleştirilmiştir. Aktüatör olarak ise, aynı oranda ölçeklendirilmiş, kese malzemesi olarak latex kullanan ve basınçlı hava ile şişip boyu kısalan mini bir yapay kas üretimi yapılmıştır. Küçültülmüş bir insan modeli üretilerek ve yapı bu modele giydirilmiştir. Tüm sistem yapay kas test ünitesine bağlanmış ve küçültülmüş prototipin davranışı incelenmiştir. Bu test sonucunda yapay kasların uzuvları birbirine çekerek öngörülen fonksiyonelliği sağladığı görülmüş; mekanizma olarak sistemin, eğilme problemleriyle karşılaşılmakla beraber, öngörülen döngü noktalarını izleyebildiği gözlemlenmiştir.
Wearable technology is such a topic which can be traced back to 1980 and has been attraction ever-increasing attention for 40 years from the robotic community. As the name implies, these devices can be worn and manipulated by humans and can also control the movements of the wearer. This potential has made wide range of areas such as military and rehabiliatation in which human body involves strive for being utilizing the wearable technology. In this thesis, a werable exoskeleton was developed to help people who partly or completely lost their walking ability or to support people who are in need of a rehabilitation treatment. This device which is powered by pneumatic artificial muscles provides the wearer with a walking motion which in fact is a function of lower limbs such as hip, legs and foot, thus makes the person walk again. First, mechanical design of the device was performed. A person of 187 cms and 80 kgs was used as a model and body proportions were determined accordingly. After the mechanical design was achieved, a walking cycle that satisfies several criterias was schemed and inverse kinematics operation was performed to obtain the required joint angles which form this cycle. However, these angles can't be applied directly because the current device uses pneumatic artificial muscles instead of electric motors. This situation leaded to necessity of obtaining a mathematical relationship between the muscle length and the joint angle which makes it possible to use joint angles as the inputs. Next part of the study is the assessment of the design by means of strength and balance. A finite element analysis was conducted to examine the structures load bearing capability for each critical point of the walking cycle. As a result, it is observed that the maximum gerilmes is lower than the materials yield strength and the structure is in balance during the cycle. Lastly, a prototype of the structed was manufactured via a 3D printer by 25% scaling. As an actuator, a pneumatic artificial muscle which utilizes latex as bladder material and swells/shortens with pressurized air were manufactured. Mini human model was printed and the device was mounted. Whole system was connected to an artificial muscle test unit and the behaviour was observed. As a result, muscles produced succeeded in pulling two limbs together as predicted and it's observed that the mechanism is able to pass the gait cycle points with bending issues.
Wearable technology is such a topic which can be traced back to 1980 and has been attraction ever-increasing attention for 40 years from the robotic community. As the name implies, these devices can be worn and manipulated by humans and can also control the movements of the wearer. This potential has made wide range of areas such as military and rehabiliatation in which human body involves strive for being utilizing the wearable technology. In this thesis, a werable exoskeleton was developed to help people who partly or completely lost their walking ability or to support people who are in need of a rehabilitation treatment. This device which is powered by pneumatic artificial muscles provides the wearer with a walking motion which in fact is a function of lower limbs such as hip, legs and foot, thus makes the person walk again. First, mechanical design of the device was performed. A person of 187 cms and 80 kgs was used as a model and body proportions were determined accordingly. After the mechanical design was achieved, a walking cycle that satisfies several criterias was schemed and inverse kinematics operation was performed to obtain the required joint angles which form this cycle. However, these angles can't be applied directly because the current device uses pneumatic artificial muscles instead of electric motors. This situation leaded to necessity of obtaining a mathematical relationship between the muscle length and the joint angle which makes it possible to use joint angles as the inputs. Next part of the study is the assessment of the design by means of strength and balance. A finite element analysis was conducted to examine the structures load bearing capability for each critical point of the walking cycle. As a result, it is observed that the maximum gerilmes is lower than the materials yield strength and the structure is in balance during the cycle. Lastly, a prototype of the structed was manufactured via a 3D printer by 25% scaling. As an actuator, a pneumatic artificial muscle which utilizes latex as bladder material and swells/shortens with pressurized air were manufactured. Mini human model was printed and the device was mounted. Whole system was connected to an artificial muscle test unit and the behaviour was observed. As a result, muscles produced succeeded in pulling two limbs together as predicted and it's observed that the mechanism is able to pass the gait cycle points with bending issues.
Açıklama
Anahtar Kelimeler
Mekatronik Mühendisliği, Mechatronics Engineering