İletken polimer ve grafen oksitle fonksiyonelleştirilmiş nanolif tabanlı piezoelektrik nanojeneratörler
Küçük Resim Yok
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışması kapsamında, kendi enerjisini üreten sistemler ve sensör teknolojilerinde kullanılabilecek, indirgenmiş grafen oksit (rGO), polianilin (PANI) ve polianilin ile fonksiyonelleştirilmiş indirgenmiş grafen oksit (rPANIGO) içeren polivinildenflorür (PVDF) piezoelektrik nanojeneratörler geliştirilmiştir. Çalışmanın birinci bölümünde, iletken malzemeler, piezoelektrik nanolifli malzeme içerisine katkılandırılmıştır. İkinci bölümde ise, iletken malzemeler nanolifli malzeme üzerine püskürtme yoluyla kaplanmıştır. Üretilen bu malzemelerin öncelikle piezoelektrik performansları ölçülmüştür. Ayrıca, numuneler üzerinde Fourier Transfer-İnfrared Spektrofotometrik (FT-IR), taramalı elektron mikroskobu (SEM), termogravimetrik analiz (TGA), mekanik test, temas açısı testi ve UV-görünür bölge (UV-VIS) spektrofotometrik analizler gerçekleştirilmiştir. Piezoelektrik nanojeneratörde, esnek elektrot elde edilebilmesi için; indirgenmiş grafen oksit, geliştirilmiş Hummers metodu ile grafitten yola çıkılarak ve laboratuvar koşullarında sentezlenmiş; yerinde polimerizasyon yöntemiyle, anilin polimerize edilerek polianilin üretilmiş ve aynı metot ile anilin, grafen oksit varlığında sentezlenip indirgenerek hibrit organik iletken malzeme üretilmiştir. Bu malzemeler ayrı ayrı etil alkol içerisinde dispers edilmiş ve dispersiyonun konsantrasyonu belirlenmiştir. Piezoelektrik katman olarak, elektroüretim cihazında, PVDF nanolifli yapı, üretilmiş, iletken malzemeler, belirlenen miktarlarda nanolif içerisine entegre edilmiş veya nanolif yüzeyine püskürtülmüşlerdir. Numunelerin kurutulmasının ardından ise elektrik alanda polarlanmışlar ve piezoelektrik ölçümler gerçekleştirilmiştir. Üretilen nanolifli yapılarda, FT-IR analizi yardımı ile ? ve ? kristalin faz tayin edilmiştir. Toz haldeki PVDF'de ? ve ? kristalin faz pikleri gözlenmezken elektroüretim aşamasında polimerin piezoelektrik ? ve ? kristalin faza geçtiği tespit edilmiştir. Ayrıca kaplama veya katkılama işlemlerinin FT-IR spektrumlarını etkilediği, fakat aslında kristalin fazlar arası geçişte rol oynamadığı saptanmıştır. Ölçümler sonucunda, kaplamalı nanojeneratörlerin kaplama kalınlığı arttıkça, çıkış voltajının düştüğü, katkılı numunelerde ise katkı miktarı arttıkça çıkış voltajının yükseldiği saptanmıştır. Bunun yanı sıra, kaplama metodunun katkılama metoduna göre sinyal yoğunluğu bakımından yetersiz kaldığı belirlenmiştir. Fakat katkılama ve kaplama işlemlerinin her ikisinin de katkısız PVDF nanolif ile oluşturulan nanojeneratörden daha yüksek çıkış voltajı verdiği gözlenmiştir. Hibrit malzeme ile kaplı nanoliflerden oluşan nanojeneratör, 10,6 V çıkış voltajı üretmiştir. Bu değer, hem katkılı hem de diğer kaplamalı numunelerin ürettiği değerlerden yüksektir. Burada grafen ve polianilin arasında sinerjik bir etkinin oluştuğu görülmüştür. Tez çalışması kapsamında üretilen nanojeneratörler, ileride kendi enerjisini üreten sistemlerde, sensör teknolojilerinde ve atık enerji geri dönüşüm sistemlerinde kullanılabileceklerdir.
Within the scope of this thesis, polyvinylchloride (PVDF) piezoelectric nanogenerators have been developed ,which can be used in their own energy generating systems and sensor technologies, containing reduced graphene oxide (rGO), polyaniline (PANI) and polyaniline functionalized reduced graphene oxide (rPANIGO). In the first part of the study, the conductive materials are doped into the piezoelectric nanofiber material. In the second part, the conductive materials were coated by spraying onto the nanofiber material. Piezoelectric performance of the materials was primarily measured. In addition, Fourier Transfer-Infrared Spectrophotometric (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), mechanical test, contact angle test and UV-visible region (UV-VIS) spectrophotometric analysis were performed. In order to obtain flexible electrodes on nanogenerators, reduced graphene oxide(rGO) was sytnesized by improved Hummers method; polyaniline(PANI) was synthesized by in-situ polymerization of aniline; polyaniline functionalized reduced graphene oxide(rPANIGO) was produced by in situ polymerization of aniline presence of graphene oxide. These materials were dispersed separately in ethyl alcohol and the concentration of the dispersion was determined. PDVF nanofibers were produced in electrospinning machine as piezoelectric layer, decided amounts of organic conductive material was integrated into or sprayed onto the nanofibers. When the samples were dried, they were polarized under electrical field and piezoelectric tests were performed. ? and ? crystalline phases of PVDF were observed in FT-IR analysis of produced nanofibers. ? and ? crystalline phase peaks were not observed on PVDF powder form and it was determined that the polymer passed to piezoelectric ? and ? crystalline phase in the electrospinning stage. In addition, it was determined that coating or doping processes affected the FT-IR spectra but did not play a role in the transition between the crystalline phases. As a result of piezoelectric measurements, output voltage decreased with incremention of coat thickness while incremention of doping amount was increasing the voltage. In addition, it was determined that the coating method was lacking in terms of signal intensity according to the doping method. Despite all these, both coating and doping processes provided higher ouput voltages than pure PVDF nanofiber's. The nanogenerator, which is consist of hybrid conductive coated PVDF nanofiber, yielded too high output voltage of 10,6 V, compared to other coated nanogenerators. A synergistic effect was observed between graphene and polyaniline. The nanogenerators, which are produced in thesis, will be able to used in self-powered systems, sensor technologies and waste energy recycling systems in the future.
Within the scope of this thesis, polyvinylchloride (PVDF) piezoelectric nanogenerators have been developed ,which can be used in their own energy generating systems and sensor technologies, containing reduced graphene oxide (rGO), polyaniline (PANI) and polyaniline functionalized reduced graphene oxide (rPANIGO). In the first part of the study, the conductive materials are doped into the piezoelectric nanofiber material. In the second part, the conductive materials were coated by spraying onto the nanofiber material. Piezoelectric performance of the materials was primarily measured. In addition, Fourier Transfer-Infrared Spectrophotometric (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), mechanical test, contact angle test and UV-visible region (UV-VIS) spectrophotometric analysis were performed. In order to obtain flexible electrodes on nanogenerators, reduced graphene oxide(rGO) was sytnesized by improved Hummers method; polyaniline(PANI) was synthesized by in-situ polymerization of aniline; polyaniline functionalized reduced graphene oxide(rPANIGO) was produced by in situ polymerization of aniline presence of graphene oxide. These materials were dispersed separately in ethyl alcohol and the concentration of the dispersion was determined. PDVF nanofibers were produced in electrospinning machine as piezoelectric layer, decided amounts of organic conductive material was integrated into or sprayed onto the nanofibers. When the samples were dried, they were polarized under electrical field and piezoelectric tests were performed. ? and ? crystalline phases of PVDF were observed in FT-IR analysis of produced nanofibers. ? and ? crystalline phase peaks were not observed on PVDF powder form and it was determined that the polymer passed to piezoelectric ? and ? crystalline phase in the electrospinning stage. In addition, it was determined that coating or doping processes affected the FT-IR spectra but did not play a role in the transition between the crystalline phases. As a result of piezoelectric measurements, output voltage decreased with incremention of coat thickness while incremention of doping amount was increasing the voltage. In addition, it was determined that the coating method was lacking in terms of signal intensity according to the doping method. Despite all these, both coating and doping processes provided higher ouput voltages than pure PVDF nanofiber's. The nanogenerator, which is consist of hybrid conductive coated PVDF nanofiber, yielded too high output voltage of 10,6 V, compared to other coated nanogenerators. A synergistic effect was observed between graphene and polyaniline. The nanogenerators, which are produced in thesis, will be able to used in self-powered systems, sensor technologies and waste energy recycling systems in the future.
Açıklama
Fen Bilimleri Enstitüsü, Lif ve Polimer Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Enerji, Energy, Kimya