Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozcan, Alper" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Analysis of cyber security knowledge gaps based on cyber security body of knowledge
    (Springer, 2023) Catal, Cagatay; Ozcan, Alper; Donmez, Emrah; Kaşif, Ahmet
    Due to the increasing number of cyber incidents and overwhelming skills shortage, it is required to evaluate the knowledge gap between cyber security education and industrial needs. As such, the objective of this study is to identify the knowledge gaps in cyber security graduates who join the cyber security workforce. We designed and performed an opinion survey by using the Cyber Security Knowledge Areas (KAs) specified in the Cyber Security Body of Knowledge (CyBOK) that comprises 19 KAs. Our data was gathered from practitioners who work in cyber security organizations. The knowledge gap was measured and evaluated by acknowledging the assumption for employing sequent data as nominal data and improved it by deploying chi-squared test. Analyses demonstrate that there is a gap that can be utilized to enhance the quality of education. According to acquired final results, three key KAs with the highest knowledge gap are Web and Mobile Security, Security Operations and Incident Management. Also, Cyber-Physical Systems (CPS), Software Lifecycles, and Vulnerabilities are the knowledge areas with largest difference in perception of importance between less and more experienced personnel. We discuss several suggestions to improve the cyber security curriculum in order to minimize the knowledge gaps. There is an expanding demand for executive cyber security personnel in industry. High-quality university education is required to improve the qualification of upcoming workforce. The capability and capacity of the national cyber security workforce is crucial for nations and security organizations. A wide range of skills, namely technical skills, implementation skills, management skills, and soft skills are required in new cyber security graduates. The use of each CyBOK KA in the industry was measured in response to the extent of learning in university environments. This is the first study conducted in this field, it is considered that this research can inspire the way for further researches.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Analysis of cyber security knowledge gaps based on cyber security body of knowledge (Sep, 10.1007/s10639-022-11261-8, 2022)
    (Springer, 2022) Catal, Cagatay; Ozcan, Alper; Donmez, Emrah; Kaşif, Ahmet
    The correct affiliation of Emrah Donmez is "Department of Software Engineering, Bandirma Onyedi Eylul University, Balikesir, Turkey".The original version has been corrected.
  • Küçük Resim Yok
    Öğe
    Hierarchical multi-head attention LSTM for polyphonic symbolic melody generation
    (Springer, 2024) Kasif, Ahmet; Sevgen, Selcuk; Ozcan, Alper; Catal, Cagatay
    Creating symbolic melodies with machine learning is challenging because it requires an understanding of musical structure and the handling of inter-dependencies and long-term dependencies. Learning the relationship between events that occur far apart in time in music poses a considerable challenge for machine learning models. Another notable feature of music is that notes must account for several inter-dependencies, including melodic, harmonic, and rhythmic aspects. Baseline methods, such as RNNs, LSTMs, and GRUs, often struggle to capture these dependencies, resulting in the generation of musically incoherent or repetitive melodies. As such, in this study, a hierarchical multi-head attention LSTM model is proposed for creating polyphonic symbolic melodies. This enables our model to generate more complex and expressive melodies than previous methods, while still being musically coherent. The model allows learning of long-term dependencies at different levels of abstraction, while retaining the ability to form inter-dependencies. The study has been conducted on two major symbolic music datasets, MAESTRO and Classical-Music MIDI, which feature musical content encoded on MIDI. The artistic nature of music poses a challenge to evaluating the generated content and qualitative analysis are often not enough. Thus, human listening tests are conducted to strengthen the evaluation. Qualitative analysis conducted on the generated melodies shows significantly improved loss scores on MSE over baseline methods, and is able to generate melodies that were both musically coherent and expressive. The listening tests conducted using Likert-scale support the qualitative results and provide better statistical scores over baseline methods.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder