Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Osman, Bilgen" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Molecularly Imprinted Nanoparticle-Embedded Electrospun Mat as an Antibacterial Wound Dressing
    (Wiley, 2025) Cerci, Azize; Akgun, Oguzhan; Karaca, Esra; Bakhshpour-Yucel, Monireh; Ari, Ferda; Cinar, Aycan Yigit; Osman, Bilgen
    Molecularly imprinted polymer (MIP) nanoparticles offer a promising controlled drug delivery platform. In this study, amoxicillin (AMOX)-imprinted polymer nanoparticles (similar to 60 nm) were synthesized via emulsion polymerization and incorporated into polyvinyl alcohol (PVA)/sodium alginate (SA) [PVS] electrospun nanofibers to develop a novel wound dressing. The nanoparticle-embedded PVS nanofibers (PVS-AMOX-MIP) demonstrated a sustained cumulative drug release of 43.6% over 2 days, governed by non-Fickian transport per the Korsmeyer-Peppas kinetic model. The nanofibers exhibited favorable physical properties, including a high specific surface area (39.66 m(2)/g), optimal porosity (78.8%), and a water vapor transmission rate (1053.4 +/- 5.9 g/m(2)/day), ideal for wound healing. Antibacterial activity studies showed significant inhibition against Staphylococcus aureus and Escherichia coli, while biocompatibility assays confirmed the mat's noncytotoxic nature and ability to promote cell proliferation. Furthermore, angiogenesis studies revealed enhanced vascularization, which is critical for tissue regeneration. The developed strategy offers a unique approach for advanced wound care and controlled drug delivery applications by combining MIP nanoparticles' molecular recognition capability with the structural advantages of electrospun nanofibers.
  • Küçük Resim Yok
    Öğe
    Preparation, Characterization, and Antimicrobial Activities of Ceragenins Incorporated Into Polyvinyl Alcohol/Gelatin/Sodium Alginate-Based Hydrogels for Treatment of Burn Wounds
    (Wiley, 2025) Aljayyousi, Nawal; Irmak, Emel Tamahkar; Ozer, Elif Tumay; Cinar, Aycan Yigit; Guzel, Cagla Bozkurt; Savage, Paul B.; Osman, Bilgen
    Ceragenins are synthetic molecules that mimic antimicrobial peptides (AMPs) in the human immune system. They feature a bile acid-based structure with appended positively charged groups that disrupt bacterial cell membranes, leading to microbial cell death or inactivation. In this study, ceragenin CSA-44 was incorporated into a polyvinyl alcohol (PVA)/gelatin (G)/sodium alginate (SA)-based hydrogel (PGA-CSA). The hydrogel was cross-linked with glutaraldehyde (GA) for 20 min using a 0.125% GA (v/v) solution. The optimized volume ratios of the polymer solutions in the hydrogel were determined to be 2:1:3 (PVA:SA:G). PGA-CSA and PGA hydrogels were characterized using scanning electron microscopy (SEM), mercury porosimetry, and Fourier transform infrared spectroscopy (FTIR). The maximum swelling ratio of PGA-CSA was 780.48% +/- 14.80%, and the WVTR value was 905.4 +/- 35.4 g/m2/d. Drug release studies showed a cumulative CSA-44 release of 29.07% over 7 days. The antibacterial activity of the hydrogel was tested against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 19151, Staphylococcus aureus ATCC 29213, and MRSA. The tested bacteria were inhibited within 2, 2.5, 3, and 3.5 h, respectively. The developed PGA-CSA hydrogel demonstrated outstanding potential and unique characteristics as an antibacterial dressing for burn wounds.
  • Küçük Resim Yok
    Öğe
    Synthesis and Molecular Docking Studies of New Ibuprofen Derivatives as AChE, BChE, and COX-2 Inhibitors
    (Wiley-V C H Verlag Gmbh, 2024) Hizliates, Cevher Gundogdu; Aydin, Ebru; Noma, Samir Abbas Ali; Kaya, Yunus; Osman, Bilgen; Demir, Nalan
    Alzheimer's disease (AD), the most common age-related neurodegenerative condition, is named after Alois Alzheimer and is marked by a progressive deterioration in memory, cognitive function, and behavior. Research has highlighted the importance of nonsteroidal anti-inflammatory drugs (NSAIDs) in inhibiting the aggregation of amyloid beta-peptide (A beta), a key feature of AD pathology. Ibuprofen, an NSAID from the propionic acid class, is widely used to manage osteoarthritis and rheumatoid arthritis, exhibiting strong anti-inflammatory and antipyretic effects. However, the drug's acidic group limits its selectivity for cyclooxygenase (COX) enzymes and contributes to several adverse effects. This study aimed to modify the acidic moiety of ibuprofen into lactone (IBU-O 1-4) and lactam (IBU-I 1-3) derivatives to mitigate these side effects. The structural properties of the synthesized imidazolone (IBU-I 1-3) and oxazolone (IBU-O 1-4) derivatives were characterized through Q-TOF LC-MS, H-1-NMR, C-1(3)-NMR, and IR spectroscopy. Molecular docking studies followed by Ellman's method assessed the inhibitory effects of these compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), while an enzyme immunoassay (EIA) kit was used to evaluate their inhibition of cyclooxygenase-2 (COX-2).
  • Küçük Resim Yok
    Öğe
    Synthesis, enzyme inhibition and molecular docking studies of novel 1,2,4-oxadiazole thioether derivatives
    (Springer Birkhauser, 2024) Olmez, Nevin Arikan; Noma, Samir Abbas Ali; Kaya, Yunus; Osman, Bilgen
    A new series of thioethers containing a 1,2,4-oxadiazole ring were synthesized by the modified Riemschneider reaction. The corresponding thiocyanate derivatives of 1,2,4-oxadiazoles were obtained in good yields by the reaction of 3-aryl-5-chloromethyl-1,2,4-oxadiazole compounds with NH4SCN in triethylene glycol at 60 degrees C as a new method. Thioether derivatives were synthesized by reacting 5-thiocyanato-3-aryl-1,2,4-oxadiazole with various tertiary or secondary alcohols in solvent-free conditions for 10-30 min at 60 degrees C. The synthesized compounds were characterized by various spectroscopic methods (FTIR, H-1 NMR, C-13 NMR, and HRMS). All 1,2,4-oxadiazole-thioethers were tested for xanthine oxidase (XO), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibition potential. The results showed that 4 h has more potential inhibition activity than positive control for XO (IC50 = 0.41 +/- 0.067 mu M) and AChE/BChE (IC50 = 0.95 +/- 0.42 mu M/1.49 +/- 0.45 mu M) and is considerably greater than other compounds. Moreover, our experimental study was supported by molecular docking to describe the binding mode of new structures to enzymes. The molecular docking calculations showed that molecules with high binding energy with at least one enzyme were 4b, 4d, 4g, 4h, 4i, 4j, 4k, and 4l. The physicochemical, ADMET, and drug-likeness parameters were computed using the SwissADMET online program. In silico studies of the molecules demonstrated that five molecules, 4b, 4d, 4g, 4h, and 4l, had relatively optimum drug similarity and medicinal chemistry properties. The five molecules synthesized and characterized in this study can be further investigated as drug or drug-like compound candidates.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder